全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于Logistic回归及机器学习方法对IBM员工流失因素的实证分析
Prediction and Comparative Analysis of IBM Employee Turnover Based on Logistic Regression and Machine Learning

DOI: 10.12677/AAM.2022.113155, PP. 1420-1427

Keywords: Logistic回归模型,机器学习,员工流失
Logistic Regression Model
, Machine Learning, Staff Turnover

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过建立Logistic回归模型和机器学习模型对IBM员工的基本特征进行分析。基于员工的年龄、部门、受教育程度等特征值,处理相关数据,设置虚拟变量,进一步构建Logistic回归模型及机器学习模型,实证分析各类特征值对员工流失率是否有显著影响,并找出最优拟合及预测效果。同时,从这些相关因素出发,针对不同属性的员工提出相应的解决方法,降低员工的流失率。最后,对不同方法的模型进行比较,为模型的可靠性提供参考标准。
The basic characteristics of IBM employees are analyzed by Logistic regression model and machine learning model. Based on the employee’s age, department, education level and other characteristic values, the logistic regression model and machine learning model are constructed to analyze and predict whether the employee loses. At the same time, it analyzes the correlation between various factors and employee turnover rate, and puts forward corresponding solutions based on these factors, so as to ensure that employees have a sense of belonging, improve their working conditions and reduce the employee turnover rate. Finally, different models are compared to select the most appropriate model to provide a more accurate reference for predicting the turnover of employees.

References

[1]  张萌. 国有企业员工流失的原因和对策分析[J]. 中小企业管理与科技(中旬刊), 2021(8): 96-98.
[2]  刘阴莺子. 基于员工满意度的企业员工流失原因分析[J]. 中国管理信息化, 2021, 24(3): 148-149.
[3]  张月寒. 企业核心员工流失影响因素分析及对策研究[D]: [硕士学位论文]. 大连: 东北财经大学, 2007.
[4]  裴琳. 重庆市民营企业核心员工流失影响因素调查分析及对策研究[D]: [硕士学位论文]. 重庆: 重庆大学, 2006.
[5]  马金贵, 张长元. 企业核心员工流失原因分析及其对策[J]. 湖南商学院学报, 2005, 12(2): 42-44.
[6]  于立勇, 詹捷辉. 基于Logistic回归分析的违约概率预测研究[J]. 财经研究, 2004, 30(9): 15-23.
[7]  李旭然, 丁晓红. 机器学习的五大类别及其主要算法综述[J]. 软件导刊, 2019, 18(7): 4-9.
[8]  杨剑锋, 乔佩蕊, 李永梅, 王宁. 机器学习分类问题及算法研究综述[J]. 统计与决策, 2019, 35(6): 36-40.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133