|
3D-PcASL和SWI在鉴别胶质瘤术后复发和假性进展中的价值
|
Abstract:
目的:分析三维伪连续式动脉自旋标记(3D-PcASL)和磁敏感加权成像(SWI)在鉴别原发性胶质瘤复发和假性进展中的诊断价值。材料与方法:纳入37例术后并放疗后出现新发强化灶的患者,采用二次手术或参考RANO标准进行3~6个月纵向MRI随访用于明确诊断。计算病灶强化区域的最大脑血流量(rCBFmax)、出血灶与强化区域面积占比(proSWI),分析两组间rCBF和proSWI值的统计学差异并评估两参数间的相关性,ROC曲线分析评价诊断性能并确定截断值。结果:复发组proSWI均值显著低于假性进展组(0.070 vs 0.270; p < 0.001),rCBFmax显著高于假性进展组(2.189 vs 1.258; p < 0.001),AUC可达到0.856、0.869,联合二个评价参数诊断,AUC可以达到0.944。proSWI与rCBF值呈负相关。结论:proSWI和rCBF值是鉴别胶质瘤复发和假性进展的可靠参数,ASL和SWI联合成像可以提高鉴别诊断的能力。
Objective: To assess and compare the diagnostic performance of 3D pseudo-continuous arterial spin labeling (3D-PcASL) imaging and susceptibility-weighted imaging (SWI) in distinguishing tumor recurrence from pseudo-progression in post-treatment glioma patients. Materials and Methods: The study enrolled 37 patients who underwent resection and chemoradiation for pathologically verified gliomas with new enhancing lesions. They underwent magnetic resonance imaging (MRI) examination that included conventional MRI sequences, SWI and 3D-PcASL sequences. Longitudinal MRI for 3~6 months follow-up or repeat surgery was used to define the diagnosis. We calculated the proportion of hemorrhagic foci for the enhancing lesions (proSWI) on magnitude image of SWI. The CBF was obtained from ASL and compared with the contralateral normal gray matter. Further comparison will use student’s t-test or Mann-Whitney U test to evaluate parameter performance and receiver-operating characteristic (ROC) analyses were conducted to evaluate the diagnostic performance of the parameters. Results: The proSWI in tumor recurrence group was significantly lower than in the pseudo-progression (0.070 vs 0.270; p < 0.001) and rCBF was significantly higher in the tumor recurrence group (2.189 vs 1.258; p < 0.001), with the area under the ROC curve (AUCs) of 0.856 and 0.869. By adding proSWI to rCBF values, AUC can reach 0.944. The proSWI was negatively correlated with the rCBF. Conclusion: proSWI and rCBF are both valuable and complementary parameters in differentiating tumor recurrence from pseudo-progression. The combination of SWI and ASL imaging has the potential to improve diagnostic performance.
[1] | Klobukowski, L., Falkov, A., Chelimo, C. and Fogh, S.E. (2018) A Retrospective Review of Re-Irradiating Patients’ Recurrent High-Grade Gliomas. Clinical Oncology, 30, 563-570. https://doi.org/10.1016/j.clon.2018.05.004 |
[2] | 刘道佳, 吴君心, 唐明灯, 林端瑜, 张杰平, 李生栩, 等. (18)F-FLT PET/CT显像评估复发脑胶质瘤患者预后的价值[J]. 国际放射医学核医学杂志 2018, 42(5): 403-408. |
[3] | Kumar, A.J., Leeds, N.E., Fuller, G.N., Van Tassel, P., Maor, M.H., Sawaya, R.E., et al. (2000) Malignant Gliomas: MR Imaging Spectrum of Radiation Therapy- and Chemotherapy-Induced Necrosis of the Brain after Treatment1. Radiology, 217, 377-384. https://doi.org/10.1148/radiology.217.2.r00nv36377 |
[4] | Mullins, M.E., Barest, G.D., Schaefer, P.W., Hochberg, F.H., Gonzalez, R.G. and Lev, M.H. (2005) Radiation Necrosis versus Glioma Recurrence: Conventional MR Imaging Clues to Diagnosis. American Journal of Neuroradiology, 26, 1967-1972. |
[5] | Aronen, H.J., Gazit, I.E., Louis, D.N., Buchbinder, B.R., Pardo, F.S., Weisskoff, R.M., et al. (1994) Cerebral Blood Volume Maps of Gliomas: Comparison with Tumor Grade and Histologic Findings. Radiology, 191, 41-51.
https://doi.org/10.1148/radiology.191.1.8134596 |
[6] | Ismail, M., Hill, V., Statsevych, V., Huang, R., Prasanna, P., Correa, R., et al. (2018) Shape Features of the Lesion Habitat to Differentiate Brain Tumor Progression from Pseudoprogression on Routine Multiparametric MRI: A Multisite Study. American Journal of Neuroradiology, 39, 2187-2193. https://doi.org/10.3174/ajnr.A5858 |
[7] | Abbasi, A.W., Westerlaan, H.E., Holtman, G.A., Aden, K.M., van Laar, P.J. and van der Hoorn, A. (2017) Incidence of Tumour Progression and Pseudoprogression in High-Grade Gliomas: A Systematic Review and Meta-Analysis. Clinical Neuroradiology, 28, 401-411. https://doi.org/10.1007/s00062-017-0584-x |
[8] | Lindner, T., Ahmeti, H., Juhasz, J., Helle, M., Jansen, O., Synowitz, M., et al. (2018) A Comparison of Arterial Spin Labeling and Dynamic Susceptibility Perfusion Imaging for Resection Control in Glioblastoma Surgery. Oncotarget, 9, 18570-18577. https://doi.org/10.18632/oncotarget.24970 |
[9] | Muto, M., Frauenfelder, G., Senese, R., Zeccolini, F., Schena, E., Giurazza, F., et al. (2018) Dynamic Susceptibility Contrast (DSC) Perfusion MRI in Differential Diagnosis between Radionecrosis and Neoangiogenesis in Cerebral Metastases Using rCBV, rCBF and K2. La radiologia medica, 123, 545-552. https://doi.org/10.1007/s11547-018-0866-7 |
[10] | Furtner, J., Bender, B., Braun, C., Schittenhelm, J., Skardelly, M., Ernemann, U., et al. (2014) Prognostic Value of Blood Flow Measurements Using Arterial Spin Labeling in Gliomas. PLoS ONE, 9, Article ID: e99616.
https://doi.org/10.1371/journal.pone.0099616 |
[11] | Zeng, Q., Jiang, B., Shi, F., Ling, C., Dong, F. and Zhang, J. (2017) 3D Pseudocontinuous Arterial Spin-Labeling MR Imaging in the Preoperative Evaluation of Gliomas. American Journal of Neuroradiology, 38, 1876-1883.
https://doi.org/10.3174/ajnr.A5299 |
[12] | 张格, 陈旺生, 陈峰, 赵应满. 磁共振多模态影像在脑胶质瘤诊断及分级中的应用效果分析[J]. 中国CT和MRI杂志 2020, 18(2): 44-47. |
[13] | Hashido, T., Saito, S. and Ishida, T. (2020) A Radiomics-Based Comparative Study on Arterial Spin Labeling and Dynamic Susceptibility Contrast Perfusion-Weighted Imaging in Gliomas. Scientific Reports, 10, Article No. 6121.
https://doi.org/10.1038/s41598-020-62658-9 |
[14] | Grabner, G., Kiesel, B., Wohrer, A., Millesi, M., Wurzer, A., G?d, S., et al. (2017) Local Image Variance of 7 Tesla SWI Is a New Technique for Preoperative Characterization of Diffusely Infiltrating Gliomas: Correlation with Tumour Grade and IDH1 Mutational Status. European Radiology, 27, 1556-1567. https://doi.org/10.1007/s00330-016-4451-y |
[15] | Fink, J., Born, D. and Chamberlain, M.C. (2012) Radiation Necrosis: Relevance with Respect to Treatment of Primary and Secondary Brain Tumors. Current Neurology Neuroscience Reports, 12, 276-285.
https://doi.org/10.1007/s11910-012-0258-7 |
[16] | Zadeh, M., Chapman, C.H., Chenevert, T., Lawrence, T.S., Ten Haken, R.K., Tsien, C.I., et al. (2014) Response-Driven Imaging Biomarkers for Predicting Radiation Necrosis of the Brain. Physics in Medicine Biology, 59, 2535-2547. https://doi.org/10.1088/0031-9155/59/10/2535 |
[17] | Jing, Y., Bhagat, S.K., Li, H., Luo, X., Wang, B., Liu, L., et al. (2016) Differentiation between Recurrent Gliomas and Radiation Necrosis Using Arterial Spin Labeling Perfusion Imaging. Experimental Therapeutic Medicine, 11, 2432-2436. https://doi.org/10.3892/etm.2016.3225 |
[18] | Nasseri, M., Gahramanov, S., Netto, J.P., Fu, R., Muldoon, L.L., Varallyay, C., et al. (2014) Evaluation of Pseudoprogression in Patients with Glioblastoma Multiforme Using Dynamic Magnetic Resonance Imaging with Ferumoxytol Calls RANO Criteria into Question. Neuro-Oncology, 16, 1146-1154. https://doi.org/10.1093/neuonc/not328 |
[19] | Burger, P.C. and Boyko, O. (1991) The Pathology of Central Nervous System Radiation Injury. In: Gutin, P.H., Leibel, S.A. and Sheline, G.E., Eds., Radiation Injury to the Nervous System, Raven Press, New York, 191-208. |
[20] | Melguizo-Gavilanes, I., Bruner, J.M., Guha-Thakurta, N., Hess, K.R. and Puduvalli, V.K. (2015) Characterization of Pseudoprogression in Patients with Glioblastoma: Is Histology the Gold Standard? Journal of Neuro-Oncology, 123, 145-150. https://doi.org/10.1007/s11060-015-1774-5 |
[21] | 白玉萍, 张静, 欧阳红, 甘铁军, 王鹏飞. ASL联合DWI在恶性胶质瘤真假性进展鉴别诊断中的应用价值[J]. 中国CT和MRI杂志, 2018, 16(8): 1-3. |
[22] | Pellerin, A., Khalifé, M., Sanson, M., Rozenblum-Beddok, L., Bertaux, M., Soret, M., et al. (2021) Simultaneously Acquired PET and ASL Imaging Biomarkers May Be Helpful in Differentiating Progression from Pseudo-Progression in Treated Gliomas. European Radiology, 31, 7395-7405. https://doi.org/10.1007/s00330-021-07732-0 |
[23] | Hoefnagels, F., Lagerwaard, F.J., Sanchez, E., Haasbeek, C.J., Knol, D.L., Slotman, B.J., et al. (2009) Radiological Progression of Cerebral Metastases after Radiosurgery: Assessment of Perfusion MRI for Differentiating between Necrosis and Recurrence. Journal of Neurology, 256, Article No. 878. https://doi.org/10.1007/s00415-009-5034-5 |
[24] | Wang, Y.L., Chen, S., Xiao, H.F., Li, Y., Wang, Y., Liu, G., et al. (2018) Differentiation between Radiation-Induced Brain Injury and Glioma Recurrence Using 3D pCASL and Dynamic Susceptibility Contrast-Enhanced Perfusion-Weighted Imaging. Radiotherapy Oncology, 129, 68-74. https://doi.org/10.1016/j.radonc.2018.01.009 |
[25] | Manning, P., Daghighi, S., Rajaratnam, M.K., Parthiban, S., Bahrami, N., Dale, A.M., et al. (2020) Differentiation of Progressive Disease from Pseudoprogression Using 3D PCASL and DSC Perfusion MRI in Patients with Glioblastoma. Journal of Neuro-Oncology, 147, 681-690. https://doi.org/10.1007/s11060-020-03475-y |