All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99


Relative Articles


PVP Assisted Hydrothermal Synthesis and Photocatalytic Properties of Brookite TiO2

DOI: 10.12677/NAT.2022.122004, PP. 26-33

Keywords: TiO2,板钛矿,PVP,水热法,光催化
, Brookite, PVP, Hydrothermal Method, Photocatalysis

Full-Text   Cite this paper   Add to My Lib


以聚乙烯吡咯烷酮(PVP)为辅助剂,采用水热法制备了板钛矿TiO2纳米颗粒。借助于多种测试仪器对所得样品进行了表征,如X射线衍射仪、拉曼光谱仪、扫描电镜、紫外漫反射光谱仪等。同时,在紫外光照射下,利用亚甲基蓝溶液降解实验评价了所得样品的光催化活性。实验结果表明,所得样品为单一相板钛矿TiO2纳米颗粒。PVP在板钛矿TiO2纳米颗粒形成过程中起到了稳定剂和分散剂作用。改变PVP用量,板钛矿TiO2的颗粒尺寸先减小后增大,禁带宽度值维持在3.2~3.3 eV范围内。PVP的最佳用量为0.2 g,该条件下所得板钛矿TiO2的纳米颗粒尺寸最小(约为21.0 nm),光催化活性最高,即在紫外灯照射120 min后,对亚甲基蓝溶液的降解率高达96.4%。
Brookite TiO
2 nanoparticles were synthesized by hydrothermal method in the presence of polyvinylpyrrolidone (PVP) as auxiliary agent. The samples were characterized by X-ray diffractometer, Raman spectrometer, scanning electron microscope, UV diffuse reflectance spectrometer, etc. At the same time, the photocatalytic activity of the samples was evaluated by the photodegradation of methylene blue (MB) solution under UV light. Experimental results show that all the samples are single-phase brookite TiO2 nanoparticles. PVP plays a stabilizing and dispersing role in the formation of brookite TiO2 nanoparticles. With the increase of the dosage of PVP, the particle size of brookite TiO2 samples decreases first and then increases, while the band gap value remains in the range of 3.2~3.3 eV. The optimal dosage of PVP is 0.2 g, and the obtained brookite TiO2 nanoparticles under this condition show the smallest particle size (about 21.0 nm) and highest photocatalytic activity, that is, the degradation rate of MB solution reaches 96.4% after UV irradiation for 120 min.


[1]  Balaganapathia, T., Kaniamuthana, B., Vinoth, S., et al. (2017) Controlled Synthesis of Brookite and Combined Brookite with Rutile Phases of Titanium Di-Oxide and Its Characterization Studies. Ceramics International, 43, 2438-2440.
[2]  Di Paola, A., Bellardita, M. and Palmisano, L. (2013) Brookite, the Least Known TiO2 Photocatalyst. Catalysts, 3, 36-73.
[3]  Akira Yama-kata, J.J. and Vequizo, M. (2019) Curious Behaviors of Photogenerated Electrons and Holes at the Defects on Anatase, Rutile, and Brookite TiO2 Powders: A Review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 40, 234-243.
[4]  Freyria, F.S., Blangetti, N., Esposito, S., et al. (2020) Effects of the Brookite Phase on the Properties of Different Nanostructured TiO2 Phases Photocatalytically Active towards the Degradation of N-Phenylurea. ChemistryOpen, 9, 903-912.
[5]  Zhang X., Zhou, H., Hao, Y.N., et al. (2020) Polaron-Induced Deep Defect Levels in Brookite TiO2: A Many-Body Green’s Function Theory Study. The Journal of Physical Chemistry C, 124, 19024-19032.
[6]  Xu, J.L., Yang, W. and Chen, R. (2020) The Photovoltaic Perfor-mance of Highly Asymmetric Phthalocyanine-Sensitized Brookite-Based Solar Cells. Optiks, 200, Article ID: 163413.
[7]  Guo, Q.Y., Wu, J.H., Yang, Y.Q., et al. (2020) Low-Temperature Processed Rare-Earth Doped Brookite TiO2 Scaffold for UV Stable, Hysteresis-Free and High-Performance Perovskite Solar Cells. Nano Energy, 77, Article ID: 105183.
[8]  Kitchamsetti, N., Kalubarme, R.S., Chikate, P.R., et al. (2019) An Investigation on the Effect of Li-Ion Cycling on the Vertically Aligned Brookite TiO2 Nanostructure. ChemistrySelect, 4, 6620-6626.
[9]  Wierzbicka, E., Altomare, M., Wu, M., et al. (2021) Reduced Grey Brookite for Noble Metal Free Photocatalytic H2 Evolution. Journal of Materials Chemistry A, 9, 1168-1179.
[10]  Zhao, W.X., Ma, S.Q., Zhou, J., et al. (2021) Direct Synthesis of De-fective Ultrathin Brookite-Phase TiO2 Nanosheets Showing Flexible Electronic Band States. Chemical Communications, 57, 500-503.
[11]  Wang, Y.J. and Li, Y.C. (2019) Template-Free Preparation and Photo-catalytic and Photoluminescent Properties of Brookite TiO2 Hollow Spheres. Journal of Nanomaterials, 2019, Article ID: 3605976.
[12]  Hezam, M., Qaid, S.M. H., Bedja, I.M., et al. (2019) Synthesis of Pure Brookite Nanorods in a Nonaqueous Growth Environment. Crystals, 9, Article No. 562.
[13]  Kasuya, K., Shahiduzzaman, M., Kobayashi, M., et al. (2021) Synthesis of Brookite-Type TiO2 Nanoparticles by Emulsion-Assisted Hydrothermal Method Using Titanium Glycolate Complex. Journal of the Ceramic Society of Japan, 129, 720-724.
[14]  Shahiduzzaman, M., Kulkarni, A., Visal, S., et al. (2020) A Single-Phase Brookite TiO2 Nanoparticle Bridge Enhances the Stability of Perovskite Solar Cells. Sustainable Energy Fuels, 4, 2009-2017.
[15]  Sanwaria, A.R., Gopal, R., Jain, J., et al. (2020) Highly Pure Brookite Phase of TiO2 from Salicylaldehyde Modified Titanium (IV) Isopropoxide: Synthesis, Characterization and Photocatalytic Applications. Journal of Inorganic and Organometallic Polymers and Materials, 30, 1393-1403.
[16]  Liu, Z.H., Wang, L., Li., L., et al. (2020) Surfactant Effect on Controllable Phase Transformation and UV-Shielding Performance of Titanium Dioxide. Materials Chemistry and Phys-ics, 240, Article ID: 122079.
[17]  Koczkur, K.M., Mourdikoudis, S., Polavarapu, S., et al. (2015) Polyvinylpyrrolidone (PVP) in Nanoparticle Synthesis. Dalton Transactions, 44, 17883-17905.
[18]  Chen, J.S., Liu, J., Qiao, S.Z., et al. (2011) Formation of Large 2D Nanosheets via PVP-Assisted Assembly of Anatase TiO2 Nanomosaics. Chemical Communications, 47, 10443-10445.
[19]  Seo, K., Sinha, K., Novitskaya, E., et al. (2018) Polyvinylpyrrolidone (PVP) Effects on Iron Oxide Nanoparticle Formation. Materials Letters, 215, 203-206.
[20]  Tompsett, G.A., Bowmaker, G.A., Cooneyet, R.P., et al. (1995) The Raman Spectrum of Brookite, TiO2 (Pbca, Z = 8). Journal of Raman Spectroscopy, 26, 57-62.
[21]  Zou, Y.L., Tan, X., Yua, T., et al. (2014) Synthesis and Photocatalytic Activity of Chrysanthemum-Like Brookite TiO2 Nanostructures. Materials Letters, 132, 182-185.


comments powered by Disqus

Contact Us


WhatsApp +8615387084133

WeChat 1538708413