All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99


Relative Articles


Progress in Preparation Methods of Microcapsules

DOI: 10.12677/NAT.2022.122003, PP. 19-25

Keywords: 微胶囊,壁材,制备方法
, Wall Material, Preparation Method

Full-Text   Cite this paper   Add to My Lib


Microcapsule technology has become one of the key technologies in the world because of its superior structure and performance. The common wall materials of microcapsules and the preparation methods of microcapsules are introduced in this paper. The wall materials of microcapsules are mainly divided into three categories: natural polymer materials, semi-synthetic polymer materials and synthetic polymer materials. The preparation methods of microcapsules are physical methods, chemical methods and physicochemical methods. In this paper, the different applicable objects, advantages and disadvantages of various methods are discussed in detail, and the current application and existing problems of microcapsule technology are prospected in order to provide theoretical guidance for the development of microcapsules.


[1]  王慧梅, 范艳敏, 王连艳. 基于微胶囊技术对油脂包埋的研究进展[J]. 现代食品科技, 2018, 34(10): 271-280+195.
[2]  Azadi, S.A., Vasheghani-Farahani, E., Hashemi-Najafbabadi, S. and Godini, A. (2016) Co-Encapsulation of Pancreatic Islets and Pentoxifylline in Alginate-Based Microcapsules with Enhanced Immunosup-pressive Effects. Progress in Biomaterials, 5, 101-109.
[3]  李岚, 袁莉. 微胶囊技术及其在复合材料中的应用[J]. 塑料工业, 2006, 34(z1): 287-289+292.
[4]  孙健平, 姜子涛, 李荣. 纳米微胶囊技术及其在食品中的应用[J]. 食品研究与开发, 2010, 31(5): 184-187.
[5]  Alkan, C, Sar?, A. and Karaipekli, A. (2011) Preparation, Thermal Properties and Thermal Reliability of Microencapsulated n-Eicosane as Novel Phase Change Material for Thermal Energy Storage. Energy Conversion and Management, 52, 687-692.
[6]  Huq, T., Fraschini, C., Khan, A., Khan, A., Riedl, B., Bou-chard, J., et al. (2017) Alginate Based Nanocomposite for Microencapsulation of Probiotic: Effect of Cellulose Nano-crystal (CNC) and Lecithin. Carbohydrate Polymers, 168, 61-69.
[7]  Vaziri, A.S., Alemzadeh, I. and Vossoughi M. (2018) Improv-ing Survivability of Lactobacillus plantarum in Alginate-Chitosan Beads Reinforced by Na-Tripolyphosphate Dual Cross-Linking. LWT, 97, 440-447.
[8]  Zeng, J., Yu, W., Dong, X., Zhao, S., Wang, Z., Liu, Y., et al. (2019) A Nanoencapsulation Suspension Biomimetic of Milk Structure for Enhanced Maternal and Fetal Absorptions of DHA to Improve Early Brain Development. Nanomedicine: Nanotechnology, Biology and Medicine, 15, 119-128.
[9]  刘曦. 蚕蛹油α-亚麻酸的模拟移动床色谱分离及微流控酶法制备单分散结构脂质微胶囊[D]: [硕士学位论文]. 镇江: 江苏科技大学, 2018.
[10]  Mettu, S., Ye, Q., Zhou, M., Dagastine, R. and Ashokkumar, M. (2018) Ultrasonically Synthesized Organic Liquid-Filled Chitosan Microcapsules: Part 2: Characterization Using AFM (Atomic Force Microscopy) and Combined AFM-Confocal Laser Scanning Fluo-rescence Microscopy. Soft Matter, 14, 3192-3201.
[11]  Chitprasert, P., Sudsai, P. and Rodklongtan A. (2012) Aluminum Car-boxymethyl Cellulose-Rice Bran Microcapsules: Enhancing Survival of Lactobacillus reuteri KUB-AC5. Carbohydrate Polymers, 90, 78-86.
[12]  Li, W., Li, X., Wang, Q., Pan, Y., Wang, T., Wang, H., Song, R., et al. (2014) Antibacterial Activity of Nanofibrous Mats Coated with Lysozyme-Layered Silicate Composites via Electrospraying. Carbohydrate Polymers, 99, 218-225.
[13]  Miao, L., Jiang, F.C., Jie, C., Hu, S., Zhou, R., Liu, G., Wang, Y.-H., et al. (2018) Facile Microencapsulation of Olive Oil in Porous Starch Granules: Fabrication, Characterization, and Oxidative Stability. International Journal of Biological Macromolecules, 111, 755-761.
[14]  Trivedi, G. and Parameshwaran, R. (2019) Microencapsulated Phase Change Material Suspensions for Cool Thermal Energy Storage. Materials Chemistry and Physics, 242, Article ID: 122519.
[15]  Kasran, M., Cui, S.W. and Goff, H.D. (2013) Covalent Attachment of Fenugreek Gum to Soy Whey Protein Isolate through Natural Maillard Reaction for Improved Emulsion Stability. Food Hydrocolloids, 30, 552-558.
[16]  Aoki, T., Hiidome, Y., Kitahata, K., Sugimoto, Y., Ibrahim, H.R. and Kato, Y. (1999) Improvement of Heat Stability and Emulsifying Activity of Ovalbumin by Conjugation with Glucuronic Acid through the Maillard Reaction. Food Research International, 32, 129-133.
[17]  Zhang, Y., Tan, C., Abbas, S., Eric, K., Xia, S. and Zhang, X. (2015) Modified SPI Improves the Emulsion Properties and Oxidative Stability of Fish Oil Microcapsules. Food Hy-drocolloids, 51, 108-117.
[18]  Lee, Y.Y., Tang, T.K., Phuah, E.T., Alitheen, N.B.M., Tan, C.-P. and Lai, O.-M. (2017) New Functionalities of Maillard Reaction Products as Emulsifiers and Encapsulating Agents, and the Processing Parameters: A Brief Review. Journal of the Science of Food and Agriculture, 97, 1379-1385.
[19]  Mcnamee, B.F., White, L.E., O’Riordan, E.D. and O’Sullivan, M. (2001) Effect of Partial Replacement of Gum Arabic with Carbohydrates on Its Microencapsulation Properties. Journal of Agri-cultural & Food Chemistry, 49, 3385-3388.
[20]  Li, Y., Wu, C., Wu, T., Wang, L., Chen, S., Ding, T., et al. (2017) Prepara-tion and Characterization of Citrus Essential Oils Loaded in Chitosan Microcapsules by Using Different Emulsifiers. Journal of Food Engineering, 217, 108-114.
[21]  Nesterenko, A., Alric, I., Silvestre, F. and Durrieu, V. (2013) Vegetable Proteins in Microencapsulation: A Review of Recent Interventions and Their Effectiveness. Industrial Crops and Products, 42, 469-479.


comments powered by Disqus

Contact Us


WhatsApp +8615387084133

WeChat 1538708413