全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

One-Pot Synthesis of Pyrido[2,3-d]pyrimidines Catalyzed by Bismuth(III)Triflate

DOI: 10.4236/ijoc.2022.121002, PP. 11-27

Keywords: Bismuth Triflate, Pyrido[2,3-d]pyrimidine, One-Pot, Biological Activity

Full-Text   Cite this paper   Add to My Lib

Abstract:

Synthesis of uracil derivatives, such as pyrido[2,3-d]pyrimidine, is very important for the pharmaceutical industry due to their many biological activities. In our continuing efforts into the development of new synthetic strategies for the preparation of heterocyclic compounds in this study, we performed reflux reactions with the catalyst Bi(OTf)3 by using a one-pot, threecomponent method. The one-pot, three-component condensation of 6-amino-1,3-dimethyluracil, with arylaldehydes and malononitrile to generate a series of 7-aminopyrido[2,3-d]pyrimidine-6-carbonitrile derivatives has been carried out in the presence of bismuth triflate as a green and reusable catalyst.

References

[1]  Bhattacharyya, P., Paul, S. and Das, A.R. (2013) Facile Synthesis of Pyridopyrimidine and Coumarin Fused Pyridine Libraries over a Lewis Base-Surfactant-Combined Catalyst TEOA in Aqueous Medium. RSC Advances, 3, 3203-3208.
https://doi.org/10.1039/c3ra23254a
[2]  Shamroukh, A.H. and Rahsad, A.E. (2016) The Chemistry of Pyrido[2,3-d]Pyrimidines and Their Applications. Journal of Chemical and Pharmaceutical Research, 8, 734-772.
[3]  Mohsenimehr, M., Mamaghani, M., Shirini, F., Sheykhan, M. and Moghaddam, F.A. (2014) One-pot Synthesis of Novel Pyrido [2,3-d] Pyrimidines Using HAp-Encapsulated-γ-Fe2O3 Supported Sulfonic Acid Nanocatalyst under Solvent-Free Conditions. Chinese Chemical Letters, 25, 1387-1391.
https://doi.org/10.1016/j.cclet.2014.04.025
[4]  Ziarini, G.M., Nasab, N.H., Rahimifard, M. and Soorki, A.A. (2015) One-pot Synthesis of Pyrido[2,3-d]pyrimidine Derivatives Using Sulfonic Acid Functionalized SBA-15 and the Study on Their Antimicrobial Activities. Journal of Saudi Chemical Society, 19, 676-681.
https://doi.org/10.1016/j.jscs.2014.06.007
[5]  Saikia, L., Das, B., Bharali, P. and Thakur, A.J. (2014) A Convenient Synthesis of Novel 5-Aryl-Pyrido[2,3-d]Pyrimidines and Screening of Their Preliminary Antibacterial Properties. Tetrahedron Letters, 55, 1796-1801.
https://doi.org/10.1016/j.tetlet.2014.01.128
[6]  Gong, H., Qi, H., Sun,W., Zhang, Y., Jiang, D., Xiao,J., Yang, X., Wang, Y. and Li, S. (2012) Design and Synthesis of a Series of Pyrido[2,3-d]pyrimidine Derivatives as CCR4 Antagonists. Molecules, 17, 9961-9970.
https://doi.org/10.3390/molecules17089961
[7]  Palasz, A. and Ve Ciez, D. (2015) In Search of Uracil Derivatives as Bioactive Agents. Uracils and Fused Uracils: Synthesis, Biological Activity and Applications. European Journal of Medicinal Chemistry, 97, 582-611.
https://doi.org/10.1016/j.ejmech.2014.10.008
[8]  Alqasoumi, S.I., Al-Taweel, A.M., Alafeefy, A.M., Noaman, E. and Ghorab, M.M. (2010) Novel Quinolines and Pyrido[4,5-b]quinolines Bearing Biologically Active Sulfonamide Moiety as a New Class of Antitumor Agents. European Journal of Medicinal Chemistry, 45, 738-744.
https://doi.org/10.1016/j.ejmech.2009.11.021
[9]  Panda, S., Roy, A., Deka, S.J., Trivedi, V. and Manna, D. (2016) Fused Heterocyclic Compounds as Potent Indoleamine-2,3-dioxygenase 1 Inhibitors. ACS Medicinal Chemistry Letter, 7, 1167-1172.
https://doi.org/10.1021/acsmedchemlett.6b00359
[10]  Gao, X., Cen, L., Li, F., Wen, R., Yan, H., Yao, H. and Zhu, S. (2018) Oral Administration of Indole Substituted Dipyrido[2,3-d]pyrimidine Derivative Exhibits Anti-Tumor Activity via Inhibiting AKT and ERK1/2 on Hepatocellular Carcinoma. Biochemical and Biophysical Research Communications, 505, 761-767.
https://doi.org/10.1016/j.bbrc.2018.09.120
[11]  Kumar, G.S., Poornachandra Y., Gunda, S.K., Reddy, K.R., Mohmed, J, Shaik, K., Kumar, C.G. and Narsaiah, B. (2018) Synthesis of Novel Hetero Ring Fused Pyridine Derivatives; Their Anticancer Activity, CoMFA and CoMSIA Studies. Bioorganic& Medicinal Chemistry Letter, 28, 2328-2337.
https://doi.org/10.1016/j.bmcl.2018.04.031
[12]  Sayed, M., Hussen, H., Elebiary, N., Hassan, G., Elmessery, S.M., Elsheakh, A.R., Nayel, M. and Abdel-Aziz, H. (2018) Tyrosine Kinase Inhibition Effects of Novel Pyrazolo[1,5-a]pyrimidines and Pyrido[2,3-d]pyrimidines Ligand: Synthesis, Biological Screening and Molecular Modeling Studies. Bioorganic Chemistry, 78, 312-323.
https://doi.org/10.1016/j.bioorg.2018.03.009
[13]  Veeraswamy, B., Madhu, D., Dev, G.J., Poornachandra, Y., Kumar, G.S., Kumar, C.G. and Narsaiah, B. (2018) Studies on Synthesis of Novel Pyrido[2,3-d]pyrimidine Derivatives, Evaluation of Their Antimicrobial Activity and Molecular Docking. Bioorganic & Medicinal Chemistry Letters, 28, 1670-1675.
https://doi.org/10.1016/j.bmcl.2018.03.022
[14]  Manickam, S. and Iyer, S.K. (2017) A New Approach for Fluoroscent Tetrahydro[f] Pyrimido[4,5-b]quinolines and Indeno Fused Pyrido[2,3-b]pyrimidines. Dyes and Pigments, 147, 300-321.
https://doi.org/10.1016/j.dyepig.2017.07.041
[15]  Shi, D., Niu, L., Shi, J., Wnag, X. and Ji, S. (2007) One-Pot Synthesis Pf Pyrido[2,3-d]pyrimidines via Efficient Three-Component Reaction in Aquepous Media. Journal of Heterocyclic Chemistry, 44, 1083-1090.
https://doi.org/10.1002/jhet.5570440517
[16]  Verma, G.K., Raghuvanshi, K., Kumar, R. and Singh, M.S. (2012) An Efficient One-Pot Three-Component Synthesis of Functionalized Pyrimido[4, 5-b] Quinolines and Indeno Fused Pyrido [2,3-d] Pyrimidines in Water. Tetrahedron Letters, 53, 399-402.
https://doi.org/10.1016/j.tetlet.2011.11.047
[17]  Parrey, I.R. and Ve Hashmi, A.A. (2016) One-Pot Synthesis of New Pyrido[2,3-d] Pyrimidine Derivatives under Ultrasonic Irridation Using Organo Catalyst 4-Dimethylaminopyridine (DMAP). Catalysis for Sustainable Energ, 3, 1-6.
https://doi.org/10.1515/cse-2016-0002
[18]  Bhat, A.R., Naikoo, G.A., Hassan I.U., Dongra R.S. and Ara, T. (2017) Ultrasound Assisted One Pot Expeditious Synthesis of New Pyrido[2,3-d]pyrimidine Analogues Using Mild and Inexpensive 4-dimethylaminopyridine (DMAP) Catalyst. Beni-Suef University Journal of Basic and Applied Sciences, 6, 238-246.
https://doi.org/10.1016/j.bjbas.2017.04.005
[19]  Samai, S., Nandi, G.C., Chowdhury, S. and Singh, M.S. (2011) L-Proline Catalyzed Synthesis of Densely Functionalized Pyrido[2,3-d]pyrimidines via Three-Component One-Pot Domino Knoevenagel Aza-Diels-Alder Reaction. Tetrahedron, 67, 5935-5941.
https://doi.org/10.1016/j.tet.2011.06.051
[20]  Chand, S. and Sandhu, J.S. (2014) Pyrido[2,3-d]pyrimidines: A Novel Tandem Michael Cyclization of 6-Aminouracils with Arylidenecyanoacetate Using BiCl3. Indian Journal of Chemistry, 533, 728-732.
http://nopr.niscair.res.in/handle/123456789/28935
[21]  Wang, X., Zeng, Z., Shi, D., Tu, S., Wei X. and Zong, Z. (2006) Three-Component, One-Pot Synthesis of Pyrido[2,3-d]pyrimidine Derivatives Catalyzed by KF-Alumina. Synthetic Communications, 35, 1921-1927.
https://doi.org/10.1081/SCC-200064984
[22]  Jolodar, O.G., Shrini F. and Seddighi, M. (2017) Efficient Synthesis of Pyrano[2,3-d]pyrimidinone and Pyrido[2,3-d]pyrimidine Derivatives in Presence of Novel Basic Ionic Liquid Catalyst. Chinese Journal of Catalysis, 38, 1245-1251.
https://doi.org/10.1016/S1872-2067(17)62827-4
[23]  Tashrifi, Z., Rad-Moghadam, K. and Mehrdad, M. (2017) Catalytic Performance of a New Bronsted Acidic Oligo(liquid) in Efficient Synthesis of Pyrano[3,2-c]quinolines and Pyrano[2,3-d]pyrimidines. Journal of Molecular Liquids, 248, 278-285.
https://doi.org/10.1016/j.molliq.2017.10.065
[24]  Mamaghani, M., Shirini, F., Bassereh, E. and Nia, R.H. (2016) 1,2-Dimethyl-N-Butanesulfonic Acid Imidazolium Hydrogen Sulfate as Efficient Ionic Liquid Catalyst in the Synthesis of Indeno Fused Pyrido [2,3-d] Pyrimidines. Journal of Saudi Chemical Society, 20, 570-576.
https://doi.org/10.1016/j.jscs.2014.12.003
[25]  Shi, D., Ni, S., Yang, F., Shi, J., Dou, G., Li, X., Wang, X. and Ji, S. (2008) An Eficient Synthesis of Pyrimido[4,5-b]quinoline and Indeno[2’,1:5,6]pyrido[2,3-d]pyrimidine Derivatives via Multicomponent Reactions in Ionic Liquid. Journal of Heterocyclic Chemistry, 45, 693-702.
https://doi.org/10.1002/jhet.5570450310
[26]  Du, B.X., Li, Y.L., Wang, X. and Shi, D. (2013) Ionic Liquid as An Efficient and Recyclable Reaction Medium for the Synthesis of Pyrido[2,3-d] Pyrimidines. Journal of Heterocyclic Chemistry, 50, 534-538.
https://doi.org/10.1002/jhet.1515
[27]  Johanshahi, P., Mamaghani, M., Haghbin, F., Nia, R.H. and Rassa, M. (2018) One-Pot Chemoselective Synthesis of Novel Pyrrole-Substituted Pyrido[2,3d]pyrimidines Using [γ-Fe2O3CHAP-SO3H] as An Efficient Nanocatalyst. Journal of Molecular Structure, 1155, 520-529.
https://doi.org/10.1016/j.molstruc.2017.11.034
[28]  Sabour, B., Peyrovi, M.H. and Hajimohammadi, M. (2015) Al-HMS-20 Catalyzed Synthesis of Pyrano [2,3-d] Pyrimidines and Pyrido [2,3-d]pyrimidines via Three-Component Reaction. Research on Chemical Intermediates, 41, 1343-1350.
https://doi.org/10.1007/s11164-013-1277-y
[29]  Bhat, A.R., Shalla, A.H. and Dongre, R.S. (2016) Dinutylamine(DBA): A Highly Efficient Catalyst for the Synthesis of Pyrano[2,3-d]pyrimidine Derivatives in Aqueous Media. Journal of Taibah University for Science, 10, 9-18.
https://doi.org/10.1016/j.jtusci.2015.03.004
[30]  Bhat, A.R., Shalla, A.H. and Dongre, R.S. (2017) Synthesis of New Annulated Pyrano [2,3-d] Pyrimidine Derivatives Using Organo Catalyst (DABCO) in Aqueous Media. Journal of Saudi Chemical Society, 21, S305-S310.
https://doi.org/10.1016/j.jscs.2014.03.008
[31]  Rad, A.M. and Mokhtary, M. (2015) Efficient One-Pot Synthesis of Pyrido[2,3-d] Pyrimidines Cataclyzed by Nanocrystalline MgO in Water. International Nano Letters, 5, 109-123.
https://doi.org/10.1007/s40089-015-0145-8
[32]  Abdolmohammadi, S. and Afsharpour, M. (2012) Facile One-Pot Synthesis of Pyrido[2,3-d]pyrimidine Derivatives over ZrO2 Nanoparticles Catalyst. Chinese Chemical Letters, 23, 257-260.
https://doi.org/10.1016/j.cclet.2012.01.001
[33]  Repichet, S., Zwick, A., Vendier, L., Le Roux, C. and Dubac, J. (2002) A Practical, Cheap and Environmentally Friendly Preperation of Bismuth(III) Trifluoromethansulfonate. Tetrahedron Letter, 43, 993-995.
https://doi.org/10.1016/S0040-4039(01)02307-3
[34]  Gaspard-Iloughmane, H. and Le Roux, C. (2004) Bismuth(III) Triflate in Organic Synthesis. European Journal of Organic Chemistr, 2004, 2517-2532.
https://doi.org/10.1002/ejoc.200300754
[35]  Ozturkcan, S.A., Turhan, K., Turgut, Z., Karadayi, M. and Güllüce, M. (2015) Ultrasonic Syhthesis, Characterization of Aminoketones by Bismuth(III) Triflate and Determination of Antigenotoxic Properties. Toxicology and Industrial Health, 31, 911-919.
https://doi.org/10.1177/0748233713484649
[36]  Ozturkcan, S.A., Turhan, K. and Turgut, Z. (2012) Ultrasound-Assisted Rapid Synthesis of Beta-Aminoketones with Direct-Type Catalytic Mannich Reaction Using Bismuth(III)triflate in Aqueous Media At Room Tempreture. Chemical Paper, 66, 61-66.
https://doi.org/10.2478/s11696-011-0097-z
[37]  Banerjee, B. (2017) Bismuth (III) Triflate: An Efficient Catalyst for the Synthesis of Diverse Biologically Relevant Heterocycles. Chemistry Select, 2, 6744-6757.
https://doi.org/10.1002/slct.201701441
[38]  Salvador, J.A., Ppinto, R. and Silvestre, S.M. (2009) Recent Advances of Bismuth (III) Salts in Organic Chemistry: Application to the Synthesis of Aliphatics, Alicyclics, Aromatics, Amino Acids and Peptides, Terpenes and Steroids of Pharmaceutical Interest. Mini-Reviews in Organic Chemistry, 6, 241-274.
https://doi.org/10.2174/157019309789371587
[39]  Metz, T.L., Leng, M., Evans, J. and Stanley, L.M. (2018) Synthesis of Heteroarylated Ketones via Bismuth(III) Triflate-Promoted Regioselective 1,4- and 1,6-Additions of Electron-Rich Heteroarenes to Cyclic Enones and Dienones. Tetrahedron, 74, 3283-3292.
https://doi.org/10.1016/j.tet.2018.04.002
[40]  Zhang, Z., Yuan, A. and Zheng, C. (2018) Synthesis of Pyridopyrimidine Derivatives Based on Benzenesulfonyl Acetonitrile Compounds via a One-Pot Sequential Four-Component Domino Reaction and Microwave-Mediated Molecular Cyclization. Synthetic Communications, 48, 2973-2982.
https://doi.org/10.1080/00397911.2018.1527354
[41]  Mahmoud, N.F.H. and El-Saghier, A.M. (2019) Multi-Component Reactions, Solvent-Free Synthesis of Substituted Pyrano-Pyridopyrimidine under Different Conditions Using ZnO Nanoparticles. Journal of Heterocyclic Chemistry, 56, 1820-1824.
https://doi.org/10.1002/jhet.3556
[42]  Pradhan, K., Bhattacharyya, P., Paul, S. and Das, A.R. (2012) Synthesis of 3,4-Dihydropyridine-2-One Derivatives in Convergent Mode Applying Bio Catalyst Vitamin B1 and Polymer Supported Catalyst PEG-SO3H from Two Different Sets of Building Blocks. Tetrahedron Letters, 53, 5840-5844.
https://doi.org/10.1016/j.tetlet.2012.08.030

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133