|
直驱开关磁阻电机磁–热耦合特性分析
|
Abstract:
电机直驱化是机电传动系统节能的重要趋势,低速大转矩开关磁阻电机是应用较广的一类直驱电机。直驱电机的高负荷电流导致本体温升明显,电机的关键尺寸参数受热形变影响而变化并影响电机的性能,本文对直驱开关磁阻电机的磁–热耦合响应进行分析以阐明直驱开关磁阻电机的服役特性。本文以24/16外转子型直驱开关磁阻电机为例,利用Ansys进行了磁–热耦合仿真,得到了开关磁阻电机稳态热场分布情况,并计算电机关键尺寸参数的热形变量;从电磁场、电感和扭矩三个角度分析了在热变形的影响下电机的运行性能,为极端工作环境下大功率开关磁阻电机的设计奠定了一定的理论基础。本文对磁–热耦合效应的研究有助于了解直驱开关磁阻电机性能演变规律,为直驱电机的电磁设计、散热设计和性能评估提供理论基础。
Utilizing direct-drive motors to save energy is an important trend in the electromechanical drive systems, and low-speed, high-torque switched reluctance motor is one of a widely used direct-drive motors. The high load current of direct-drive motors leads to a significant temperature rise of the motor and the key dimensional parameters of the motor are affected by thermal deformation, thus affecting the performance of the motor. In this paper, the magneto-thermal coupling response of direct-drive switched reluctance motors is analyzed to clarify the service characteristics of direct-drive switched reluctance motors. Specifically, by using a 24/16 outer rotor as an example, a multi-physics field simulation is carried out via Ansys to obtain the steady-state thermal field dis-tribution of a switched reluctance motor, and to calculate the thermal deformation variables of the key dimensional parameters of the motor. Meanwhile, the operational performance of the motor under the influence of thermal deformation is analyzed from three perspectives, namely, electromagnetic field, inductance and torque. This lays a certain foundation for the design process of switched reluctance motors. The study of the magneto-thermal coupling effect in this paper is conducive to understanding the performance evolution of direct-drive switched reluctance motors and provides a theoretical basis for the electromagnetic design, thermal design and performance evaluation of direct-drive motors.
[1] | Vijayakumar, K., Karthikeyan, R. and Paramasivam, S. (2008) Switched Reluctance Motor Modeling, Design, Simulation, and Analysis: A Comprehensive Review. IEEE Transactions on Magnetics, 44, 4605-4617.
https://doi.org/10.1109/TMAG.2008.2003334 |
[2] | 丁文, 周会军, 鱼振民. 基于ANSYS的开关磁阻电机温度场分析[J]. 微电机(伺服技术), 2005(5): 13-15+33. |
[3] | 陈美玲, 石瑶, 张云. 高真空工况下开关磁阻电机温度场分析[J]. 电测与仪表, 2020, 57(19): 45-50. |
[4] | 刘细平, 曾剑, 徐晨. 电动汽车用开关磁阻电机温度场分析研究[J]. 微特电机, 2017, 45(1): 23-25+43. |
[5] | 刘苹, 张小平, 匡斯建. 开关磁阻电机温度场分析中模型网格划分方法[J]. 红外技术, 2019, 41(10): 929-934. |
[6] | 刘苹, 张小平, 张铸. 开关磁阻电机温度场分析中绕组气隙建模方法[J]. 电力系统及其自动化学报, 2019, 31(06): 93-97+106. |
[7] | Silwal, B. and Sergeant, P. (2018) Thermally Induced Mechanical Stress in the Stator Windings of Electrical Machines. Energies, 11, 2113. https://doi.org/10.3390/en11082113 |
[8] | Inamura, S., Sakai, T. and Sawa, K. (2003) A Temperature Rise Analysis of Switched Reluctance Motor Due to the Core and Copper Loss by FEM. IEEE Transactions on Magnetics, 39, 1554-1557.
https://doi.org/10.1109/TMAG.2003.810358 |
[9] | 刘成良, 李炳初, 凌晓. 开关磁阻电机优化控制——理论、方法及应用[M]. 上海: 上海交通大学出版社, 2020. |
[10] | 赖林松, 曹卉, 刘崇军. 大推力永磁直线同步电机温度场计算与分析[J]. 微电机, 2016, 49(4): 35-37. |
[11] | 赵勇, 曲兵妮, 宋建成. 基于相绕组电流波形的开关磁阻电机损耗研究[J]. 微特电机, 2020, 48(11): 25-28+36. |
[12] | 王宝, 安跃军, 王光玉. 真空干泵驱动用电机转子热问题对比分析[J]. 电机与控制应用, 2021, 48(5): 53-59. |
[13] | 闫文举, 陈昊, 马小平. 不同转子极数下磁场解耦型双定子开关磁阻电机的研究[J]. 电工技术学报, 2021, 36(14): 2945-2956. |
[14] | Castano, S.M., Yang, R. and Mak, C. (2018) External-Rotor Switched Reluctance Motor for Direct-Drive Home Appliances. IECON 2018 44th Annual Conference of the IEEE Industrial Electronics Society, Washington DC, 21-23 October 2018, 514-521. https://doi.org/10.1109/IECON.2018.8591727 |