全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高压诱导Sb2O4等结构相变
Isostructural Transition of Sb2O4 during Compression

DOI: 10.12677/APP.2022.123018, PP. 159-166

Keywords: 高压,吸收光谱,等结构相变
High Pressure
, Absorption Spectrum, Isostructural Transition

Full-Text   Cite this paper   Add to My Lib

Abstract:

四氧化二锑(Sb2O4)作为传统的阻燃剂和催化剂,广泛应用于工业领域。Sb2O4作为一种混合价金属氧化物,具备十分独特的结构和性质。本文利用同步辐射X射线衍射和金刚石对顶砧技术,系统地研究了Sb2O4的高压结构特征,发现其在3.2 GPa以上由正交相转变为单斜相,并在50 GPa压力范围内保持稳定的单斜结构。通过吸收光谱对晶体的能带结构进行分析,在压力升高过程中,带隙能量经历了增大到减小的转变,在30 GPa以上时带隙能量迅速随压力升高而降低。尽管Sb2O4在50 GPa压力范围内没有发现新的衍射峰,但在30 GPa以上,β-Sb2O4发生了等结构相变。加压过程中,β-Sb2O4和高压亚稳相β’-Sb2O4的体弹模量发生了突变,从100 GPa突增到190 GPa。这是因为Sb3+的孤对电子在晶体空间内存在不均匀的库伦斥力,导致晶体在受压过程中,出现了性质的突变。
Antimony can form a series of oxides, including Sb2O3, Sb2O4, Sb2O5, Sb6O13, Sb2O and gaseous SbO. Among them, diantimony tetroxide (Sb2O4) is known as a conventional flame retardant and catalyst. As a mixed valence oxide mineral, diantimony tetroxide has interesting structures and properties. This mineral has two phases at ambient conditions, α-Sb2O4 and β-Sb2O4, and the latter was considered as the thermodynamic stable structure. Using synchrotron X-ray diffraction combined with diamond anvil cell techniques, the structural evolution of Sb2O4 was studied under high pres-sure. According to in situ high-pressure absorption experiment, the properties of semiconductors change from band gap broadening to band gap narrowing above 30 GPa, the band gap of the Sb2O4 decreases normally with the increase of pressure. Even though no new diffraction peak was over served in XRD patterns up to 50 GPa pressure range, an isostructural transition in β-Sb2O4 happened above 30 GPa. The corresponding bulk moduli of monoclinic β-Sb2O4 and β’-Sb2O4 change abruptly, from 100 GPa to 190 GPa. There is an uneven Coulomb repulsion force in the crystal space of the lone pair electrons of Sb3+, which leads to the sudden change of the properties of the crystal during compression.

References

[1]  Rogers, D. and Skapski, A.C. (1964) Crystal Structure of Beta-Sb2O4: New Polymorphy. Thomas Graham House, London.
[2]  Amador, J., Gutierrez, P.E., Monge, M.A., Rasines, I. and Ruiz, V.C. (1988) Diantimony Tetraoxides Revisited. Inorganic Chemistry, 27, 1367-1370.
https://doi.org/10.1021/ic00281a011
[3]  Orosel, D., Balog, P., Liu, H., Qian, J. and Jansen, M. (2005) Sb2O4 at High Pressures and High Temperatures. Journal of Solid State Chemistry, 178, 2602-2607.
https://doi.org/10.1016/j.jssc.2005.05.037
[4]  Ren, G., Wang, C., Xia, J., Liu, J. and Zhong, H. (2009) Synthesis of α-Sb2O4 Nanorods by a Facile Hydrothermal Route. Materials Letters, 63, 605-607.
https://doi.org/10.1016/j.matlet.2008.11.049
[5]  Zhou, X., Zhang, Z., Wang, J., Wang, Q., Ma, G. and Lei, Z. (2017) Sb2O4/Reduced Graphene Oxide Composite as High-Performance Anode Material for Lithium Ion Batteries. Journal of Alloys and Compounds, 699, 611-618.
https://doi.org/10.1016/j.jallcom.2016.12.434
[6]  Kim, C.E., Yoo, S.H., Bahr, D.F., Stampfl, C. and Soon, A. (2017) Uncovering the Thermo-Kinetic Origins of Phase Ordering in Mixed-Valence Antimony Tetroxide by First-Principles Modeling. Inorganic Chemistry, 56, 6545-6550.
https://doi.org/10.1021/acs.inorgchem.7b00661
[7]  Xu, J.A., Mao, H.K. and Bell, P.M. (1986) High-Pressure Ruby and Diamond Fluorescence: Observations at 0.21 to 0.55 Terapascal. Science, 232, 1404-1406.
https://doi.org/10.1126/science.232.4756.1404
[8]  Alsaleh, N.M., Shoko, E. and Schwingenschlogl, U. (2019) Pressure-Induced Conduction Band Convergence in the Thermoelectric Ternary Chalcogenide CuBiS2. Physical Chemistry Chemical Physics, 21, 662-673.
https://doi.org/10.1039/C8CP05818K
[9]  Bu, K., Luo, H., Guo, S., Li, M., Wang, D., Dong, H., Ding, Y., Yang, W. and Lu, X. (2020) Pressure-Regulated Dynamic Stereochemical Role of Lone-Pair Electrons in Layered Bi2O2S. The Journal of Physical Chemistry Letters, 22, 9702-9707.
https://doi.org/10.1021/acs.jpclett.0c02893
[10]  Walsh, A., Payne, D.J., Egdell, R.G. and Watson, G.W. (2011) Stereochemistry of Post-Transition Metal Oxides: Revision of the Classical Lone Pair Model. Chemical Society Reviews, 40, 4455-4463.
https://doi.org/10.1039/c1cs15098g
[11]  Locherer, T., Prasad, D.L.V.K., Dinnebier, R., Wedig, U., Jansen, M., Garbarino, G. and Hansen, T. (2011) High-Pressure Structural Evolution of HP-Bi2O3. Physical Review B, 83, Article ID: 214102.
https://doi.org/10.1103/PhysRevB.83.214102
[12]  Ghedia, S., Locherer, T., Dinnebier, R., Prasad, D.L.V.K., Wedig, U., Jansen, M. and Senyshyn, A. (2010) High-Pressure and High-Temperature Multianvil Synthesis of Metastable Polymorphs of Bi2O3: Crystal Structure and Electronic Properties. Physical Review B, 82, Article ID: 024106.
https://doi.org/10.1103/PhysRevB.82.024106
[13]  Zou, Y., Zhang, W., Li, X., Ma, M., Li, X., Wang, C.H., He, B., Wang, S., Chen, Z., Zhao, Y. and Li, B. (2018) Pressure-Induced Anomalies and Structural Instability in Compressed Beta-Sb2O3. Physical Chemistry Chemical Physics, 20, 11430-11436.
https://doi.org/10.1039/C8CP00084K
[14]  Efthimiopoulos, I., Kemichick, J., Zhou, X., Khare, S.V., Ikuta, D. and Wang, Y. (2014) High-Pressure Studies of Bi2S3. The Journal of Physical Chemistry A, 118, 1713-1720.
https://doi.org/10.1021/jp4124666
[15]  Toby, B.H. (2001) EXPGUI, a Graphical User Interface for GSAS. Journal of Applied Crystallography, 34, 210-213.
https://doi.org/10.1107/S0021889801002242
[16]  Errandonea, D., Munoz, A., Rodriguez-Hernandez, P., Gomis, O., Achary, S.N., Popescu, C., Patwe, S.J. and Tyagi, A. K. (2016) High-Pressure Crystal Structure, Lattice Vibrations, and Band Structure of BiSbO4. Inorganic Chemistry, 55, 4958-4969.
https://doi.org/10.1021/acs.inorgchem.6b00503
[17]  Zhao, J., Wang, L., Dong, D., Liu, Z., Liu, H., Chen, G., Wu, D., Luo, J., Wang, N., Yu, Y., Jin, C. and Guo, Q. (2008) Structure Stability and Compressibility of Iron-Based Superconductor Nd(O0.88F0.12)FeAs under High Pressure. Journal of the American Chemical Society, 130, 13828-13829.
https://doi.org/10.1021/ja804229k
[18]  Zhao, J., Xu, L., Liu, Y., Yu, Z., Li, C., Wang, Y. and Liu, Z. (2015) Isostructural Phase Transition in Bismuth Oxide Chloride Induced by Redistribution of Charge under High Pressure. The Journal of Physical Chemistry C, 119, 27657-27665.
https://doi.org/10.1021/acs.jpcc.5b07180
[19]  Ji, C., Li, B., Liu, W., Smith, J.S., Majumdar, A., Luo, W., Ahuja, R., Shu, J., Wang, J., Sinogeikin, S., Meng, Y., Prakapenka, V.B., Greenberg, E., Xu, R., Huang, X., Yang, W., Shen, G., Mao, W.L. and Mao, H.K. (2019) Ultrahigh-Pressure Isostructural Electronic Transitions in Hydrogen. Nature, 573, 558-562.
https://doi.org/10.1038/s41586-019-1565-9
[20]  Zhao, K., Wang, Y., Sui, Y., Xin, C., Wang, X., Wang, Y., Liu, Z. and Li, B. (2015) First Principles Study of Isostructural Phase Transition in Sb2Te3 under High Pressure. Physica Status Solidi (RRL)-Rapid Research Letters, 9, 379-383.
https://doi.org/10.1002/pssr.201510091
[21]  Vinet, P., Ferrante, J., Smith, J.R. and Rose, J.H. (1986) A Universal Equation of State for Solids. Solid State Physics, 19, L467-L473.
https://doi.org/10.1088/0022-3719/19/20/001
[22]  Pereira, A.L.J., Gracia, L., Santamaría-Pérez, D., Vilaplana, R., Manjón, F.J., Errandonea, D., Nalin, M. and Beltrán, A. (2012) Structural and Vibrational Study of Cubic Sb2O3 under High Pressure. Physical Review B, 85, Article ID: 174108.
https://doi.org/10.1103/PhysRevB.85.174108
[23]  Occelli, F., Farber, D.L., Badro, J., Aracne, C.M., Teter, D.M., Hanfland, M., Canny, B. and Couzinet, B. (2004) Experimental Evidence for a High-Pressure Isostructural Phase Transition in Osmium. Physical Review Letters, 93, Article ID: 095502.
https://doi.org/10.1103/PhysRevLett.93.095502
[24]  Yang, L., Dai, L., Li, H., Hu, H., Hong, M., Zhang, X. and Liu, P. (2021) High-Pressure Investigations on the Isostructural Phase Transition and Metallization in Realgar with Diamond Anvil Cells. Geoscience Frontiers, 12, 1031-1037.
https://doi.org/10.1016/j.gsf.2020.05.017

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133