|
Applied Physics 2022
转动和磁场下的手征相变
|
Abstract:
关于磁场和角速度对强相互作用相变的影响,一些学者已经开展了一定的研究。研究表明系统旋转会抑制夸克凝聚,且选取的旋转系统的半径对动力学夸克质量也有影响,π介子在磁场中旋转对其凝聚起促进作用等。本文针对重离子的非对心碰撞,对同时存在磁场和旋转的强相互作用相变进行了研究。考虑到QCD渐进自由的本质特征,用变耦合参数和含有夸克自由度的NJL模型,得到了格点QCD预测的反磁催化现象,探究了磁场和旋转角速度对手征相变的临界温度的影响。
Some studies have been carried out on the influence of magnetic field and angular velocity on phase transition of strong interaction. The rotation can inhibit the quark condensation, and the selected radius in a rotation system also has an effect on the mass of the dynamical quark. The rotation of pion in magnetic field promotes its condensation. Given the non-central collision of heavy ions, we investigate phase transition of strong interaction with both magnetic field and rotation. In view of the fact that asymptotic freedom of QCD, we take the NJL model of variable coupling parameters and containing quark freedoms, obtain the inverse magnetic catalysis phenomenon predicted by lattice QCD, and study the influence of magnetic field and rotational angular velocity on the critical temperature of chiral phase transformation.
[1] | Kogut, J.B. and Sinclair, D.K. (2008) Lattice QCD at Finite Temperature and Density in the Phase-Quenched Approxi-mation. Physical Review D, 77, Article ID: 114503. https://doi.org/10.1103/PhysRevD.77.114503 |
[2] | Fukushima, K. (2019) Extreme Matter in Electromagnetic Fields and Rotation. Progress in Particle and Nuclear Physics, 107, 167-199. https://doi.org/10.1016/j.ppnp.2019.04.001 |
[3] | Becattini, F., Piccinini, F. and Rizzo, J. (2008) Angular Momentum Conservation in Heavy Ion Collisions at Very High Energy. Physical Review C, 77, Article ID: 024906. https://doi.org/10.1103/PhysRevC.77.024906 |
[4] | Jiang, Y., Lin, Z.W. and Liao, J. (2016) Rotating Quark-Gluon Plasma in Relativistic Heavy-Ion Collisions. Physical Review C, 94, Article ID: 044910. https://doi.org/10.1103/PhysRevC.94.044910 |
[5] | Collaboration, S. (2017) Global Λ Hyperon Polarization in Nu-clear Collisions: Evidence for the Most Vortical Fluid. Nature, 548, 62-65. https://doi.org/10.1038/nature23004 |
[6] | Kawati, S., Konisi, G. and Miyata, H. (1983) Symmetry Behavior in an External Field. Physical Review D, 28, 1537-1541. https://doi.org/10.1103/PhysRevD.28.1537 |
[7] | Klevansky, S.P. and Lemmer, R.H. (1989) Chiral-Symmetry Restoration in the Nambu-Jona-Lasinio Model with a Constant Electromag-netic Field. Physical Review D, 39, 3478-3489. https://doi.org/10.1103/PhysRevD.39.3478 |
[8] | Klimenko, K.G. (1992) Three-Dimensional Gross-Neveu Model at Nonzero Temperature and in the Presence of an External Electromag-netic Field. Zeitschrift für Physik C Particles and Fields, 54, 323-329.
https://doi.org/10.1007/BF01566663 |
[9] | Krive, I.V. and Naftulin, S.A. (1992) Dynamical Symmetry Breaking and Phase Transitions in a Three-Dimensional Gross-Neveu Model in a Strong Magnetic Field. Physical Review D, 46, 2737-2740.
https://doi.org/10.1103/PhysRevD.46.2737 |
[10] | Kharzeev, D.E., Landsteiner, K., Schmitt, A. and Yee, H.U. (2012) Strongly Interacting Matter in Magnetic Fields: A Guide to This Volume. Lecture Notes in Physics, Vol. 871, Springer, Berlin, Heidelberg, 1-11.
https://doi.org/10.1007/978-3-642-37305-3_1 |
[11] | Gusynin, V.P., Miransky, V.A. and Shovkovy, I.A. (1995) Dimensional Reduction and Dynamical Chiral Symmetry Breaking by a Magnetic Field in 3 + 1 Dimensions. Physics Letters B, 349, 477-483.
https://doi.org/10.1016/0370-2693(95)00232-A |
[12] | Mao, S. (2018) Chiral Symmetry Restoration and Quark De-confinement beyond Mean Field in a Magnetized PNJL Model. Physical Review D, 97, Article ID: 011501. https://doi.org/10.1103/PhysRevD.97.011501 |
[13] | Farias, R., Gomes, K.P., Krein, G., et al. (2014) Importance of Asymptotic Freedom for the Pseudocritical Temperature in Magnetized Quark Matter. Physical Review C, 90, Article ID: 025203.
https://doi.org/10.1103/PhysRevC.90.025203 |
[14] | Gusynin, V.P., Miransky, V.A. and Shovkovy, I.A. (1995) Dynamical Chiral Symmetry Breaking by a Magnetic Field in QED. Physical Review D, 52, 4747-4751. https://doi.org/10.1103/PhysRevD.52.4747 |
[15] | Jiang, Y. and Liao, J. (2016) Pairing Phase Transitions of Matter under Rotation. Physical Review Letters, 117, Article ID: 192302. https://doi.org/10.1103/PhysRevLett.117.192302 |
[16] | Chernodub, M.N. and Gongyo, S. (2016) Interacting Fer-mions in Rotation: Chiral Symmetry Restoration, Moment of Inertia and Thermodynamics. Journal of High Energy Physics, 1, 1-32. https://doi.org/10.1007/JHEP01(2017)136 |
[17] | Chen, H.L., Fukushima, K., Huang, X.G. and Mameda, K. (2015) Analogy between Rotation and Density for Dirac Fermions in a Magnetic Field. Physical Review D, 93, Article ID: 104052.
https://doi.org/10.1103/PhysRevD.93.104052 |
[18] | Cao, G. and He, L. (2019) Rotation Induced Charged Pion Condensation in a Strong Magnetic Field: A Nambu-Jona-Lasino Model Study. Physical Review D, 100, Article ID: 094015.
https://link.aps.org/doi/10.1103/PhysRevD.100.094015 |
[19] | Zhang, Z., Shi, C., He, X.T., Luo, X. and Zong, H.S. (2020) Chiral Phase Transition inside a Rotating Cylinder within the Nambu-Jona-Lasinio Model. Physical Review D, 102, Article ID: 114023.
https://doi.org/10.1103/PhysRevD.102.114023 |
[20] | Farias, R., Timóteo, V.S., Avancini, S.S., et al. (2017) Thermo-Magnetic Effects in Quark Matter: Nambu-Jona-Lasinio Model Constrained by Lattice QCD. European Physical Journal A, 53, Article No. 101.
https://doi.org/10.1140/epja/i2017-12320-8 |