全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

SnO2中空球的制备、表征以及NO2气敏特性研究
Preparation, Characterization and NO2 Gas Sensing Property of SnO2 Hollow Spheres

DOI: 10.12677/APP.2022.123014, PP. 119-125

Keywords: SnO2中空球,气体传感器,NO2
SnO2 Hollow Sphere
, Gas Sensors, NO2 Detection

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文用水热法制备了SnO2纳米材料,研究了该材料的气敏特性曲线,结果表明该材料的传感器对NO2气体具有较高的灵敏度。并通过SEM、XRD、TEM、IR、PL等对材料的微观结构和敏感机理进行了分析。这些发现为气体传感器的应用提供了可能。
In this work, the fabrication of SnO2 hollow nanospheres is reported by enforcing a hydrothermal method. The gas sensitive characteristic curve of the material is studied. The results show that the material sensor has high sensitivity to NO2 gas. The results show that the material sensor has high sensitivity to NO2 gas. The microstructure and sensitive mechanism of the materials were analyzed by SEM, XRD, TEM, IR and PL. These findings make it possible for gas sensors to be used.

References

[1]  Ampuero, S. and Bosset, J.O. (2003) The Electronic Nose Applied to Dairy Products: A Review. Sensors & Actuators, B: Chemical, 94, 1-12.
https://doi.org/10.1016/S0925-4005(03)00321-6
[2]  Zhang, C., Luo, Y., Xu, J., et al. (2019) Room Temperature Conductive Type Metal Oxide Semiconductor Gas Sensors for NO2 Detection. Sensors and Actuators A: Physical, 289, 118-133.
https://doi.org/10.1016/j.sna.2019.02.027
[3]  Wang, B., Zhu, L.F., Yang, Y.H., et al. (2008) Fabrication of a SnO2 Nanowire Gas Sensor and Sensor Performance for Hydrogen. Journal of Physical Chemistry C, 112, 6643-6647.
https://doi.org/10.1021/jp8003147
[4]  Liu, X., Cui, J., Sun, J. and Zhang, X. (2014) 3D Graphene Aerogel-Supported SnO2 Nanoparticles for Efficient Detection of NO2. RSC Advances, 4, 22601-22605.
https://doi.org/10.1039/c4ra02453b
[5]  Drmosh, Q.A., Yamani, Z.H., Mohamedkhair, A.K., et al. (2018) Gold Nanoparticles Incorporated SnO2 Thin Film: Highly Responsive And Selective Detection of NO2 at Room Temperature. Materials Letters, 214, 283-286.
https://doi.org/10.1016/j.matlet.2017.12.013
[6]  Prades, J.D., Jimenez-Diaz, R., Hernandez-Ramirez, F., et al. (2009) Equivalence between Thermal and Room Temperature UV Light-Modulated Responses of Gas Sensors Based on Individual SnO2 Nanowires. Sensors & Actuators, B: Chemical, 140, 337-341.
https://doi.org/10.1016/j.snb.2009.04.070
[7]  Hyodo, T., Urata, K., Kamada, K., et al. (2017) Semiconductor-Type SnO2-Based NO2 Sensors Operated at Room Temperature under UV-Light Irradiation. Sensors & Actuators, B: Chemical, 253, 630-640.
https://doi.org/10.1016/j.snb.2017.06.155
[8]  Zhang, S., Zhao, L., Huang, B., et al. (2020) UV-Activated Formaldehyde Sensing Properties of Hollow TiO2 @SnO2 Heterojunctions at Room Temperature. Sensors & Actuators, B: Chemical, 319, 128264.
https://doi.org/10.1016/j.snb.2020.128264
[9]  Wei, Y., Chen, C., Yuan, G., et al. (2016) SnO2 Nanocrystals with Abundant Oxygen Vacancies: Preparation and Room Temperature NO2 Sensing. Journal of Alloys and Compounds, 681, 43-49.
https://doi.org/10.1016/j.jallcom.2016.04.220
[10]  Chen, Y., Meng, Q., Zhang, L., et al. (2019) SnO2-Based Electron Transporting Layer Materials for Perovskite Solar Cells: A Review of Recent Progress. Journal of Energy Chemistry, 35, 144-167.
https://doi.org/10.1016/j.jechem.2018.11.011
[11]  Comini, E., Faglia, G., Sberveglieri, G., et al. (2002) Stable and Highly Sensitive Gas Sensors Based on Semiconducting Oxide Nanobelts. Applied Physics Letters, 81, 1869-1871.
https://doi.org/10.1063/1.1504867
[12]  Tjoa, V., Jun, W., Dravid, V., Mhaisalkarad, S. and Mathews, N. (2011) Hybrid Graphene-Metal Nanoparticle Systems: Electronic Properties and Gas Interaction. Journal of Materials Chemistry, 21, 15593-15599.
https://doi.org/10.1039/c1jm12676h

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133