全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

球形相变储能单元填充床瞬态传热特性数值研究
Numerical Study on Transient Heat Transfer Characteristics of Packed Beds of Spherical Phase Change Energy Storage Elements

DOI: 10.12677/MOS.2022.112041, PP. 442-453

Keywords: 储能,填充床,穿孔球,相变材料
Energy Storage
, Packed Bed, Sphere with Holes, Phase Change Material

Full-Text   Cite this paper   Add to My Lib

Abstract:

填充床储热装置作为储能子系统广泛应用于诸如光热电站等能源系统。本文采用数值模拟方法对不同结构的球形储能单元构成的填充床储能装置的瞬态传热特性进行了研究。使用的球形储能单元包括光滑球体、表面带凹坑球体和带贯穿孔洞球体,研究发现穿孔小球的储热性能优势明显。基于带孔小球储能单元比较分析了相变材料以及非相变材料组成的储能填充床的储能性能,研究结果表明相变材料的潜热明显提高了储能量。本文也研究了储能单元孔径、传热介质入口温度和储能材料潜热值对储热性能的影响。
Packed bed based heat storage devices are widely utilized as energy storage subsystem in energy systems such as solar thermal power stations. In this work, transient heat transfer characteristics of heat storage packed beds of spherical energy storage elements were numerically investigated. The utilized spherical energy storage elements include smooth spheres, grooved spheres and spheres with holes. It has been found that heat storage performance of the packed beds of spheres with holes is obviously better than that of the other two types. Heat storage performance of packed beds of phase change material elements was compared with that of beds with non-phase-change elements based on spheres with holes. The results indicate that the latent heat obviously enhances the heat storage. Influences of hole size of spheres, inlet temperature of fluid and latent heat of heat storage materials on heat storage performance were also studied in this paper.

References

[1]  Guo, S.P., Liu, Q.B., Sun, J. and Jin, H.G. (2018) A Review on the Utilization of Hybrid Renewable Energy. Renewable and Sustainable Energy Reviews, 91, 1121-1147.
https://doi.org/10.1016/j.rser.2018.04.105
[2]  Mathiesen, B.V., Lund, H. and Karlsson, K. (2011) 100% Renewable Energy Systems, Climate Mitigation and Economic Growth. Applied Energy, 88, 488-501.
https://doi.org/10.1016/j.apenergy.2010.03.001
[3]  Qiu, Y., Li, M.J., He, Y.L. and Tao, W.Q. (2017) Thermal Performance Analysis of a Parabolic Trough Solar Collector Using Supercritical CO2 as Heat Transfer Fluid under Non-Uniform Solar Flux. Applied Thermal Engineering, 115, 1255-1265.
https://doi.org/10.1016/j.applthermaleng.2016.09.044
[4]  Wu, M., Li, M.J., Xu, C., He, Y. and Tao, W. (2014) The Impact of Concrete Structure on the Thermal Performance of the Dual-Media Thermocline Thermal Storage Tank Using Concrete as the Solid Medium. Applied Energy, 113, 1363-1371.
https://doi.org/10.1016/j.apenergy.2013.08.044
[5]  Pacheco, J.E., Showalter, S.K. and Kolb, W.J. (2002) Development of a Molten-Salt Thermocline Thermal Storage System for Parabolic trough Plants. Journal of Solar Energy En-gineering, 124, 153-159.
https://doi.org/10.1115/1.1464123
[6]  Yang, X.P., Yang, X.X., Qin, F.G.F. and Jiang, R.H. (2016) Experimental Investigation of a Molten Salt Thermocline Storage Tank. International Journal of Sustainable Energy, 35, 606-614.
https://doi.org/10.1080/14786451.2014.930465
[7]  Hoffmann, J.F., Fasquelle, T., Goetz, V. and Py, X. (2016) A Thermocline Thermal Energy Storage System with Filler Materials for Concentrated Solar Power Plants: Experimental Data and Numerical Model Sensitivity to Different Experimental Tank Scales. Applied Thermal Engineering, 100, 753-761.
https://doi.org/10.1016/j.applthermaleng.2016.01.110
[8]  Zanganeh, G., Pedretti, A., Zavattoni, S., Barbato, M. and Steinfeld, A. (2012) Packed-Bed Thermal Storage for Concentrated Solar Power–Pilot-Scale Demonstration and Industrial-Scale Design. Solar Energy, 86, 3084-3098.
https://doi.org/10.1016/j.solener.2012.07.019
[9]  Bellan, S., Alam, T.E., González-Aguilar, J., Romero, M., Rahman, M.M., Yogi Goswami, D., et al. (2015) Numerical and Experimental Studies on Heat Transfer Characteristics of Thermal Energy Storage System Packed with Molten Salt PCM Capsules. Applied Thermal Engineering, 90, 970-979.
https://doi.org/10.1016/j.applthermaleng.2015.07.056
[10]  杨小平, 杨晓西, 丁静, 徐勇军, 杨敏林, 蒋润花. 高温填充床蓄热过程传热特性的实验研究[J]. 工程热物理学报, 2014, 35(3): 529-532.
[11]  Erregueragui, Z., Boutammachte, N., Bouatem, A., Merroun, O. and Moukhtar Zemmouri, E.L. (2016) Packed-Bed Thermal Energy Storage Analysis: Quartzite and Palm-Oil Performance. Energy Procedia, 99, 370-379.
https://doi.org/10.1016/j.egypro.2016.10.127
[12]  Singh, S., S?rensen, K., Condra, T., S?ndergaard Batz, S. and Kristensen, K. (2019) Investigation on Transient Performance of a Large-Scale Packed-Bed Thermal Energy Storage. Applied Energy, 239, 1114-1129.
https://doi.org/10.1016/j.apenergy.2019.01.260
[13]  Niedermeier, K., Marocco, L., Flesch, J., Mohan, G., Coventry, J. and Wetzel, T. (2018) Performance of Molten Sodium vs. Molten Salts in a Packed Bed Thermal Energy Storage. Applied Thermal Engineering, 141, 368-377.
https://doi.org/10.1016/j.applthermaleng.2018.05.080
[14]  Ortega-Fernández, I., Zavattoni, S.A., Rodríguez-Aseguinolaza, J., D’Aguanno, B. and Barbato, M.C. (2017) Analysis of an Integrated Packed Bed Thermal Energy Storage System for Heat Recovery in Compressed Air Energy Storage Technology. Applied Energy, 205, 280-293.
https://doi.org/10.1016/j.apenergy.2017.07.039
[15]  Odenthal, C., Klasing, F. and Bauer, T. (2019) A Three-Equation Thermocline Thermal Energy Storage Model for Bidisperse Packed Beds. Solar Energy, 191, 410-419.
https://doi.org/10.1016/j.solener.2019.09.005
[16]  Abdulla, A. and Reddy, K.S. (2017) Effect of Operating Parameters on Thermal Performance of Molten Salt Packed-Bed Thermocline Thermal Energy Storage System Forconcentrating Solar Power Plants. International Journal of Thermal Sciences, 121, 30-44.
https://doi.org/10.1016/j.ijthermalsci.2017.07.004
[17]  Gautam, A. and Saini, R.P. (2020) Experimental Investigation of Heat Transfer and Fluid Flow Behavior of Packed Bed Solar Thermal Energy Storage System Having Spheres as Packing Element with Pores. Solar Energy, 204, 530-541.
https://doi.org/10.1016/j.solener.2020.05.024
[18]  Yang, X.P. and Cai, Z.D. (2019) An Analysis of a Packed Bed Thermal Energy Storage System Using Sensible Heat and Phase Change Materials. International Journal of Heat and Mass Transfer, 144, Article ID: 118651.
https://doi.org/10.1016/j.ijheatmasstransfer.2019.118651
[19]  Zhao, B.C., Cheng, M.S., Liu, C. and Dai, Z.M. (2018) System-Level Performance Optimization of Molten-Salt Packed-Bed Thermal Energy Storage for Concentrating Solar Power. Applied Energy, 226, 225-239.
https://doi.org/10.1016/j.apenergy.2018.05.081
[20]  Partopour, B. and Dixon, A.G. (2016) Computationally Efficient Incorporation of Microkinetics into Resolved-Particle CFD Simulations of Fixed-Bed Reactors. Computers and Chemical Engineering, 88, 126-134.
https://doi.org/10.1016/j.compchemeng.2016.02.015
[21]  Li, M.J., Jin, B., Ma, Z. and Yuan, F. (2018) Experimental and Numerical Study on the Performance of a New High-Temperature Packed-Bed Thermal Energy Storage System with Macroencapsulation of Molten Salt Phase Change Material. Applied Energy, 221, 1-15.
https://doi.org/10.1016/j.apenergy.2018.03.156
[22]  Whitaker, S. (1972) Forced Convection Heat Transfer Correlations for Flow in Pipes, Past Flat Plates, Single Cylinders, Single Spheres, and For Flow in Packed Beds and Tube Bundles. AIChE Journal, 18, 361-371.
https://doi.org/10.1002/aic.690180219

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133