全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

C3X涡轮叶片综合冷却效率数值研究
Numerical Study on Overall Cooling Effectiveness of C3X Turbine Blade

DOI: 10.12677/MOS.2022.112039, PP. 423-431

Keywords: 综合冷却效率,共轭传热,毕渥数,表面粗糙度
Overall Cooling Effectiveness
, Conjugate Heat Transfer, Biot Number, Surface Roughness

Full-Text   Cite this paper   Add to My Lib

Abstract:

燃气轮机叶片综合冷却效率实验中,实验工况与实际运行工况不一致,使应用实验结果的叶片设计出现偏差,从而达不到预期冷却效果。根据一维公式提出的理论选取对综合冷却效率造成影响的参数。通过研究不同参数下C3X叶片综合冷却效率的变化情况,量化选取的参数对综合冷却效率的影响,得到了毕渥数、粗糙度对叶片综合冷却效率的影响规律。研究结果表明:随着叶片外表面毕渥数增加,综合冷却效率分布均匀性增加。当Bi由0.023227增加至0.023252,Bi增加幅度0.11%时,平均综合冷却效率由0.324增加至0.357,综合冷却效率增加幅度为10.2%。在实验工况范围内,当Ks由0.8 mm增加至3.0 mm,平均综合冷却效率由0.34增加至0.37,综合冷却效率增加幅度为8.82%。
In the overall cooling effectiveness experiment of gas turbine blades, the experimental conditions are different from the actual operating conditions. This leads to deviation in the blade which applied experimental results, and thus fails to achieve the expected cooling effectiveness. According to the theory of one-dimensional formula, the parameters affecting the overall cooling effectiveness are selected. By studying the changes of overall cooling effectiveness of C3x blades under different parameters and quantifying the influence of selected parameters on overall cooling effectiveness, the influence laws of Biot number and roughness on overall cooling effectiveness of blades are obtained. The results show that the distribution uniformity of overall cooling effectiveness increases with the increase of the Biot number on the outer surface of the blade. When it increases from 0.023227 to 0.023252 by 0.11%, the average overall cooling effectiveness increases from 0.324 to 0.357, and the overall cooling effectiveness increases by 10.2%. In the range of experimental conditions, when KS increases from 0.8 mm to 3.0 mm, the average overall cooling effectiveness increases from 0.34 to 0.37, and the increased range of overall cooling effectiveness is 8.82%.?

References

[1]  [1] York, W.D. and Leylek, J.H. (2003) Three-Dimensional Conjugate Heat Transfer Simulation of an Internally-Cooled Gas Turbine Vane. Turbo Expo: Power for Land, Sea, and Air. ASME Paper No: GT2003-38551, 351-360.
https://doi.org/10.1115/GT2003-38551
[2]  Facchini, B., Magi, A. and Scotti Del Greco, A. (2004) Conjugate Heat Transfer Simulation of a Radially Cooled Gas Turbine Vane. Turbo Expo: Power for Land, Sea, and Air. ASME Paper No: GT2004-54213, 951-961.
https://doi.org/10.1115/GT2004-54213
[3]  Luo, J. and Razinsky, E.H. (2007) Conjugate Heat Transfer Analysis of a Cooled Turbine Vane Using the V2F Turbulence Model. Journal of Turbomachinery, 129, 773-781.
https://doi.org/10.1115/1.2720483
[4]  Takahashi, T., Watanabe, K. and Sakai, T. (2005) Conjugate Heat Transfer Analysis of a Rotor Blade with Rib-Roughened Internal Cooling Passages. Turbo Expo: Power for Land, Sea, and Air. ASME Paper No: GT2005-68227, 275-284.
https://doi.org/10.1115/GT2005-68227
[5]  An, B.T., Liu, J.J. and Jiang, H.D. (2008) Numerical Investigation on Unsteady Effects of Hot Streak on Flow and Heat Transfer in a Turbine Stage. Turbo Expo: Power for Land, Sea, and Air. ASME Paper No: GT2008-50415, 1735-1746.
https://doi.org/10.1115/GT2008-50415
[6]  An, B.T., Liu, J.J. and Jiang, H.D. (2009) Combined Unsteady Effects of Hot Streak and Trailing Edge Coolant Ejection in a Turbine Stage. Turbo Expo: Power for Land, Sea, and Air. ASME Paper No: GT2009-59473, 433-444.
https://doi.org/10.1115/GT2009-59473
[7]  Bohn, D.E., Becker, V.J., Kusterer, K.A., et al. (1999) 3-D Internal Flow and Conjugate Calculations of a Convective Cooled Turbine Blade with Serpentine-Shaped and Ribbed Channels. Turbo Expo: Power for Land, Sea, and Air. ASME Paper No: 99-GT-220, V003T01A062.
https://doi.org/10.1115/99-GT-220
[8]  陈毅, 韦宏, 祖迎庆, 等. 气冷涡轮叶片元件级气热耦合实验研究[J]. 复旦学报(自然科学版), 2019, 58(4): 506-514.
[9]  Chavez, K., Slavens, T.N. and Bogard, D. (2017) Experi-mentally Measured Effects of Incidence Angle on the Adiabatic and Overall Effectiveness of a Fully Cooled Turbine Airfoil with Shaped Showerhead Holes. Journal of Turbomachinery, 139, Article ID: 091007.
https://doi.org/10.1115/1.4036200
[10]  Williams, R.P., Dyson, T.E., Bogard, D.G., et al. (2014) Sensitivity of the Overall Effectiveness to Film Cooling and Internal Cooling on a Turbine Vane Suction Side. Journal of Turbomachinery, 136, Article ID: 031006.
https://doi.org/10.1115/1.4024681
[11]  Albert, J.E. and Bogard, D.G. (2013) Measurements of Adiabatic Film and Overall Cooling Effectiveness on a Turbine Vane Pressure Side with a Trench. Journal of Turbomachinery, 135, Article ID: 051007.
https://doi.org/10.1115/1.4007820
[12]  李明飞, 李雪英, 任静, 蒋洪德. 综合冷却效率多参数影响分析[J]. 工程热物理学报, 2017, 38(12): 2720-2724.
[13]  李广超, 莫唯书, 张魏, 赵长宇, 黄福幸. 涡轮导向叶片综合冷却特性实验研究[J]. 推进技术, 2018, 39(12): 2772-2778.
[14]  钟博, 郭昊雁, 魏景涛, 杨卫华. 涡轮叶片综合冷却效率实验研究[J]. 推进技术, 2021, 42(2): 335-343.
[15]  Dees, J.E., Bogard, D.G., Ledezma, G.A., et al. (2012) Experimental Measurements and Computational Predictions for an Internally Cooled Simulated Turbine Vane. Journal of Turbomachinery, 134, Article ID: 061003.
https://doi.org/10.1115/1.4006280
[16]  Sweeney, P.C. and Rhodes, J.F. (2000) An Infrared Technique for Evaluating Turbine Airfoil Cooling Designs. Journal of Turbomachinery, 122, 170-177.
https://doi.org/10.1115/1.555438

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133