The effect of foliar spray
of young lemon trees with Chitosan (CH) (200 - 300- 400 ppm), on antioxidant enzymes activities (peroxidase POD, polyphenol
oxidase PPO) and total phenolic content, and their influence on leaf miner (Phyllocnistis citrella) activity (tunnel
length and damage density) under field condition was investigated. The results
showed that treatment with chitosan 300 ppm enhanced the total phenolic content
(5.975 mg/g) and the POD activity(0.533 min-1mg-1protein), while PPO
activity was increased by chitosan 200 ppm(1.394 ΔA/min/g FW). The results
demonstrated as well that chitosan treatment has a beneficial effect in
reducing leaf miner activity, by decreasing tunnel length and damage density.
References
[1]
Webber, H.J. (1967) History and Development of Citrus Industry. In: Reuther, W., Webber, H.J. and Baxter, E.D., Eds., The Citrus Industry, Vol. 1, University of California, Riverside, 1-39.
[2]
Liu, Y., Heying, E. and Tanumihardjo, S.A. (2012) History, Global Distribution, and Nutritional Importance of Citrus Fruits. Comprehensive Reviews in Food Science and Food Safety, 11, 530-545. https://doi.org/10.1111/j.1541-4337.2012.00201.x
[3]
Okwu, D.E. and Emenike, I.N. (2007) Nutritive Value and Mineral Content of Different Varieties of Citrus Fruits. Journal of Food Technology, 5, 105-108.
[4]
Xu, G.H., Chen, J.C., Liu, D.H., Zhang, Y.H., Jiang, P. and Ye, X.Q. (2008) Minerals, Phenolic Compounds, and Antioxidant Capacity of Citrus Peel Extract by Hot Water. Journal of Food Science, 73, C11-C18.
https://doi.org/10.1111/j.1750-3841.2007.00546.x
[5]
Abd-Ghafar, M.F., Prasad, K.N., Weng, K.K. and Ismail, A. (2010) Flavonoid, Hesperidine, Total Phenolic Contents and Antioxidant Activities from Citrus Species. African Journal of Biotechnology, 9, 326-330.
[6]
Silalahi, J. (2002) Anticancer and Health Protective Properties of Citrus Fruit Components. Asia Pacific Journal of Clinical Nutrition, 11, 79-84.
https://doi.org/10.1046/j.1440-6047.2002.00271.x
[7]
Achor, D.S., Browning, H. and Albrigo, L.G. (1997) Anatomical and Histochemical Effects of Feeding by Citrus Leafminer Larvae (Phyllocnistis citrella Stainton) in Citrus Leaves. Journal of the American Society for Horticultural Science, 122, 829-836.
https://doi.org/10.21273/JASHS.122.6.829
[8]
Beattie, A. (2004) Citrus Leafminer. 4th Edition, NSW Department of Primary Industries, University of Western Sydney, Sydney.
[9]
Garcia-Mari, F., Granda, C., Zaragoza, S. and Agustí, M. (2002) Impact of Phyllocnistis citrella (Lepidoptera, Gracillariidae) on Leaf Area Development and Yield of Mature Citrus Trees in the Mediterranean Area. Journal of Economic Entomology, 95, 966-974.
[10]
Schaffer, B., Pena, J.E., Colls, A.M. and Hunsberger, A. (1997) Citrus Leafminer (Lepidoptera: Gracillariidae) in Lime: Assessment of Leaf Damage and Effects on Photosynthesis. Crop Protection, 16, 337-343.
https://doi.org/10.1016/S0261-2194(97)00003-3
[11]
Jesus Jr., W.C., Belasque Jr., J., Amorim, L., Christiano, R.S.C., Parra, J.R.P. and Bergamin Filho, A. (2006) Injuries Caused by Citrus Leafminer (Phyllocnistis citrella) Exacerbate Citrus Canker (Xanthomonas axonopodis pv. Citri) Infection. Fitopatologia Brasileira, 31, 277-283.
https://doi.org/10.1590/S0100-41582006000300006
[12]
Hall, D.G., Gottwald, T.R. and Bock, C.H. (2010) Exacerbation of Citrus Canker by Citrus Leafminer Phyllocnistis citrella in Florida. Florida Entomologist, 93, 558-566.
https://doi.org/10.1653/024.093.0413
[13]
Paiva, P.E.B. and Yamamoto, P.T. (2015) Natural Parasitism of Citrus Leafminer (Lepidoptera: Gracillariidae) over Eight Years in Seven Citrus Regions of Sao Paulo, Brazil. Florida Entomologist, 98, 660-664. https://doi.org/10.1653/024.098.0241
[14]
Bautista, B.S., Hernandez, L.M., Bosquez, M.E. and Wilson, C.L. (2003) Effects of Chitosan and Plant Extracts on Growth of Colletotrichum gloeosporioides, Anthracnose Levels and Quality of Papaya Fruit. Crop Protection, 22, 1087-1092.
https://doi.org/10.1016/S0261-2194(03)00117-0
[15]
War, A.R., Paulraj, M.G., Ahmad, T., Buhroo, A.A., Hussain, B., Ignacimuthu, S. and Sharma, H.C. (2012) Mechanisms of Plant Defense against Insect Herbivores. Plant Signaling & Behavior, 7, 1306-1320. https://doi.org/10.4161/psb.21663
[16]
Hanley, M.E., Lamont, B.B., Fairbanks, M.M. and Rafferty, C.M. (2007) Plant Structural Traits and Their Role in Antiherbivore Defense. Perspectives in Plant Ecology, Evolution and Systematics, 8, 157-178.
https://doi.org/10.1016/j.ppees.2007.01.001
[17]
Maffei, M.E., Mithofer, A. and Boland, W. (2007) Insects Feeding on Plants: Rapid Signals and Responses Preceding the Induction of Phytochemical Release. Phytochemistry, 68, 2946-2959. https://doi.org/10.1016/j.phytochem.2007.07.016
[18]
Amarowicz, R., Pegg, R.B., Rahimi-Moghaddam, P., Barl, B. and Weil, J.A. (2004) Free-radical Scavenging Capacity and Antioxidant Activity of Selected Plant Species from the Canadian Prairies. Food Chemistry, 84, 551-562.
https://doi.org/10.1016/S0308-8146(03)00278-4
[19]
Duffey, S. and Felton, G. (1991) Enzymatic Antinutritive Defenses of the Tomato Plant against Insects. In: Hedin, P., Ed., Naturally Occurring Pest Bioregulators, American Chemical Society, Washington DC, 166-197.
https://doi.org/10.1021/bk-1991-0449.ch012
[20]
Vaughn, K.C., Lax, A.R. and Duke, S.O. (1988) Polyphenol Oxidase: The Chloroplast Oxidase with No Established Function. Physiologia Plantarum, 72, 659-665.
https://doi.org/10.1111/j.1399-3054.1988.tb09180.x
[21]
Mayer, A.M. and Hard, E. (1979) Polyphenol Oxidases in Plants. Phytochemistry, 18, 193-215. https://doi.org/10.1016/0031-9422(79)80057-6
[22]
Sathiyabama, M. and Charles, R.E. (2015) Fungal Cell Wall Polymer Based Nanoparticles in Protection of Tomato Plants from Wilt Disease Caused by Fusariumoxysporum f.sp. Lycopersici. Carbohydrate Polymers, 133, 400-407.
https://doi.org/10.1016/j.carbpol.2015.07.066
[23]
Sathiyabama, M.G., Akila, R. and Einstein, C. (2014) Chitosan-induced Defence Responses in Tomato Plants against Earlynblight Disease Caused by Alternaria solani (Ellis and Martin) Sorauer. Archives of Phytopathology and Plant Protection, 47, 1777-1787. https://doi.org/10.1080/03235408.2013.858423
[24]
Kulikov, S.N., Chirkov, S.N., Ilina, A.V., Lopatin, S.A. and Varlamov, V.P. (2006) Effect of the Molecular Weight of Chitosan on Its Antiviral Activity in Plants. Applied Biochemistry and Microbiology, 42, 200-203.
https://doi.org/10.1134/S0003683806020165
[25]
Silva, M., Nunes, D., Cardoso1, A.R., Ferreiral, D., Britol, M., Pintadol, M.E. and Vasconcelos, M.W. (2014) Chitosan as a Biocontrol Agent against the Pinewood Nematode (Bursaphelenchus xylophilus). Forest Pathology, 44, 420-423.
https://doi.org/10.1111/efp.12136
[26]
Kananont, N., Pichyangkura, R., Chanprame, S., Chadchawan, S. and Limpanavech, P. (2010) Chitosan Specificity for the in Vitro Seed Germination of Two Dendrobium orchids (Asparagales: Orchidaceae). Scientia Horticulturae, 124, 239-247.
https://doi.org/10.1016/j.scienta.2009.11.019
[27]
Limpanavech, P., Chaiyasuta, S., Vongpromek, R., Pichyangkura, R., Khunwasi, C., Chadchawan, S. and Bangyeekhun, T. (2008) Chitosan Effects on Floral Production,gene Expression, and Anatomical Changes in the Dendrobium Orchid. Scientia Horticulturae, 116, 65-72. https://doi.org/10.1016/j.scienta.2007.10.034
[28]
Lin, W., Hu, X., Zhang, W., Rogers, W.J. and Cai, W. (2005) Hydrogen Peroxide Mediatesdefence Responses Induced by Chitosans of Different Molecular Weights in Rice. Journal of Plant Physiology, 162, 937-944.
https://doi.org/10.1016/j.jplph.2004.10.003
[29]
Ohta, K., Morishita, S., Suda, K., Kobayashi, N. and Hosoki, T. (2004) Effect of Chitosansoil Mixture Treatment in the Seedling Stage and FIowering of Severalornamental Plants. Journal of the Japanese Society for Horticultural Science, 73, 66-68. https://doi.org/10.2503/jjshs.73.66
[30]
Pornpienpakdee, P., Singhasurasak, R., Chaiyasap, P., Pichyangkura, R., Bunjongrat, R., Chadchawan, S. and Limpanavech, P. (2010) Improving the Micropropagation Efficiency of Hybrid Dendrobium Orchids with Chitosan. Scientia Horticulturae, 124, 490-499. https://doi.org/10.1016/j.scienta.2010.02.008
[31]
Dixon, R.A., Harrison, M.J. and Lamb, C.J. (1994) Early Events in the Activation of Plant Defenses. Annual Review of Phytopatholgy, 32, 479-510.
https://doi.org/10.1146/annurev.py.32.090194.002403
[32]
Rakwal, R., Tamogami, S., Agrawal, G.K. and Iwahashi, H. (2002) Octadecanoid Signaling Component ‘‘Burst’’ in Rice (Oryza sativa L.) Seedling Leaves upon Wounding by Cut and Treatment with Fungal Elicitor Chitosan. Biochemical and Biophysical Research Communications, 295, 1041-1045.
https://doi.org/10.1016/S0006-291X(02)00779-9
[33]
Zhang, M.I., Tan, T., Yuan, H. and Rui, C. (2003) Insecticidal and Fungicidal Activities of Chitosan and Oligo-Chitosan. Journal of Bioactive and Compatible Polymers, 18, 391-400. https://doi.org/10.1177/0883911503039019
[34]
Rabea, E.I., Badawy, M.E.I., Rogge, T.M., Stevens, C.V., Steurbaut, W., Hofte, M., et al. (2006) Enhancement of Fungicidal and Insecticidal Activity by Reductive Alkylation of Chitosan. Pest Management Science, 62, 890-897.
https://doi.org/10.1002/ps.1263
[35]
Zayed, M.S. (2021) A Novel Approach of Chitosan and Its Derivatives Bioactivity against the Pinworm TutaabsolutaMeyrick (Lepidoptera: Gelechiidae) Journal of Plant Protection and Pathology, 12, 323-330. https://doi.org/10.21608/jppp.2021.171290
[36]
Sofy, A.R., Dawoud, R.A., Sofy, M.R., Mohamed, H.I., Hmed, A.A. and El-Dougdoug, N.K. (2020) Improving Regulation of Enzymatic and Non-Enzymatic Antioxidants and Stress-related Gene Stimulation in Cucumber Mosaic Cucumovirus-Infected Cucumber Plants Treated with Glycine Betaine, Chitosan and Combination. Molecules, 25, Article No. 2341. https://doi.org/10.3390/molecules25102341
[37]
Liu, R., Wang, Z.Y., Li, T.T., Wang, F. and An, J. (2014) The Role of Chitosan in Polyphenols Accumulation and Induction of Defense Enzymes in Pinuskoraiensis Seedlings. Chinese Journal of Plant Ecology, 38, 749-756.
[38]
Kahromi, S. and Khara, J. (2021) Chitosan Stimulates Secondary Metabolite Production and Nutrient Uptake in Medicinal Plant Dracocephalum kotschyi. Journal of the Science of Food and Agriculture, 101, 3898-3907.
https://doi.org/10.1002/jsfa.11030
[39]
Hammerschmidt, R., Nuckles, E.M. and Kuc, J. (1982) Association of Enhanced Peroxidase Activity with Induced Systemic Resistance of Cucumber to Colletotrichum lagenarium. Physiological Plant Pathology, 20, 73-82.
https://doi.org/10.1016/0048-4059(82)90025-X
[40]
Arnnok, P., Ruangviriyachai, C., Mahachai, R., Techawongstien, S. and Chanthai, S. (2010) Optimization and Determination of Polyphenol Oxidase and Peroxidase Activities in Hot Pepper (Capsicum Annuum L.) Pericarb. International Food Research Journal, 17, 385-392.
[41]
Soliva-Fortuny, R.C., Grigelmo-Miguel, N., Odriozola-Serrano, I., Gorinstein, S. and Martín-Belloso, O. (2001) Browning Evaluation of Ready-to-eat Apples as Affected by Modified Atmosphere Packaging. Journal of Agricultural and Food Chemistry, 49, 3685-3690. https://doi.org/10.1021/jf010190c
[42]
Singleton, V.L. and Rossi, J.A.J.R. (1965) Colorimetry of Total Phenolics with Phosphomolybdic-phosphotungstic Acid Reagents. American Journal of Enology and Viticulture, 16, 144-158.
[43]
Desikan, R., Mackerness, S.A.-H., Hancock, J.T. and Neill, S.J. (2001) Regulation of TheArabidopsistranscriptome by Oxidative Stress. Plant Physiology, 127, 159-172.
https://doi.org/10.1104/pp.127.1.159
[44]
Levine, A., Tenhaken, R., Dixon, R. and Lamb, C. (1994) H2O2 from the Oxidative Burst Orchestrates the Plant Hypersensitive Disease Resistance Response. Cell, 79, 583-593. https://doi.org/10.1016/0092-8674(94)90544-4
[45]
Lamb, C. and Dixon, R.A. (1997) The Oxidative Burst in Plant Disease Resistance. Annual Review of Plant Physiology and Plant Molecular Biology, 48, 251-275.
https://doi.org/10.1146/annurev.arplant.48.1.251
[46]
Alvarez, M.E., Pennell, R.I., Meijer, P.J., Ishikawa, A., Dixon, R.A. and Lamb, C. (1998) Reactive Oxygen Intermediates Mediate a Systemic Signal Network in the Establishment of Plant Immunity. Cell, 92, 773-784.
https://doi.org/10.1016/S0092-8674(00)81405-1
[47]
Guo, H.L., Du, Y.G., Bai, X.F. and Zhao, X.M. (2003) Effects of Active Oxygen on Suspended Cotton Cell Culture by Oligochitosan. Chinese Journal of Marine Drugs, No, 1, 11-12+39.
[48]
Bhonwong, A., Stout, M.J., Attajarusit, J. and Tantasawat, P. (2009) Defensive Role of Tomato Polyphenol Oxidases against Cotton Bollworm (Helicoverpa armigera) and Beet Armyworm (Spodoptera exigua). Journal of Chemical Ecology, 35, 28-38.
https://doi.org/10.1007/s10886-008-9571-7
[49]
Steffens, J.C., Harel, E. and Hunt, M.D. (1994) Polyphenol Oxidase. In: Ellio, B., Kuroki, G.W. and Stafford, H.A., Eds., Genetic Engineering of Plant Secondary Metabolism, Plenum, New York, 275-312.
https://doi.org/10.1007/978-1-4615-2544-8_11
[50]
Mayer, A.M., and Harel, E. (1991) Phenoloxidases and Their Significance in Fruit and Vegetables. In: Fox, P.F., Ed., Food Enzymology, Elsevier, New York, 373-398.
[51]
Friedman, M. (1997) Chemistry, Biochemistry, and Dietary Role of Potato Polyphenols. Journal of Agricultural and Food Chemistry, 45, 1523-1540.
https://doi.org/10.1021/jf960900s
[52]
Grant, J.J. and Loake, G.J. (2000) Role of Reactive Oxygen Intermediates and Cognate Redox Signaling in Disease Resistance. Plant Physiology, 124, 21-30.
https://doi.org/10.1104/pp.124.1.21
[53]
Orozco-Ca′rdenas, M.L., Narvaez-Vasquez. J. and Ryan, C.A. (2001) Hydrogen Peroxide Acts as a Second Messenger for the Induction of Defense Genes in Tomato Plants in Response to Wounding, Systemin, and Methyl Jasmonate. Plant Cell, 13, 179-191. https://doi.org/10.1105/tpc.13.1.179
[54]
Liu, J., Tian, S., Meng, X. and Xu, Y. (2007) Effects of Chitosan on Control of Postharvest Diseases and Physiological Responses of Tomato Fruit. Postharvest Biology and Technology, 44, 300-306. https://doi.org/10.1016/j.postharvbio.2006.12.019
[55]
Doares, S.H., Syrovets, T., Weiler, E.W. and Ryan, C.A. (1995) Oligogalacturonides and Chitosan Activate Plant Defensive Genes through the Octadecanoid Pathway. Proceedings of the National Academy of Sciences of the United States of America, 92, 4095-4098. https://doi.org/10.1073/pnas.92.10.4095
[56]
Pirbalouti, A.G., Malekpoor, F., Salimi, A., Golparvar, A. and Hamedi, B. (2017) Effects of Foliar of the Application Chitosan and Reduced Irrigation on Essential Oil Yield, Total Phenol Content and Antioxidant Activity of Extracts from Green and Purple Basil. Acta Scientiarum Polonorum Hortorum Cultus, 16, 177-186.
Xing, K., Zhu, X., Peng, X. and Qin, S. (2015) Chitosan Antimicrobial and Eliciting Properties for Pest Control in Agriculture: A Review. Agronomy for Sustainable Development, 35, 569-588. https://doi.org/10.1007/s13593-014-0252-3
[59]
Vasyukova, N.I., Zinoveva, L.I., Il′inskaya, E.A., Perekhod, G.I., Chalenko, N.G., Il′ina, A.V., et al. (2001) Modulation of Plant Resistance to Diseases by Water-soluble Chitosan. Applied Biochemistry and Microbiology, 37, 103-109.
https://doi.org/10.1023/A:1002865029994
[60]
Felton, G.W., Donato, K., Del Vecchio, R.J., and Duffey, S.S. (1989) Activation of Plant Polyphenol Oxidases by Insect Feeding Damage Reduces Nutritive Quality of Foliage for Noctuid Herbivores. Journal of Chemical Ecology, 15, 2667-2694.
https://doi.org/10.1007/BF01014725
[61]
Felton, G.W., Workman, J. and Duffey, S.S. (1992) Avoidance of Antinutritive Plant Defense: Role of Midgut PH in Colorado Potato Beetle. Journal of Chemical Ecology, 18, 571-583. https://doi.org/10.1007/BF00987820
[62]
Stout, M.J., Workman, K.V., Bostock, R.M. and Duffey, S.S. (1998) Specificity of Induced Resistance in the Tomato, Lycopersicon esculentum. Oecologia, 113, 74-81.
https://doi.org/10.1007/s004420050355
[63]
Duffey, S.S. and Stout, M.J. (1996) Antinutritive and Toxic Components of Plant Defense against Insects. Archives of Insect Biochemistry and Physiology, 32, 3-37.
https://doi.org/10.1002/(SICI)1520-6327(1996)32:1<3::AID-ARCH2>3.0.CO;2-1