In this work, we applied the invariant method to calculate the coherent state of the harmonic oscillator with position-dependent mass, which in modern physics has great application. We also obtain the calculation of Heisenberg’s uncertainty principle, and we will show that it is verified.
References
[1]
Mouayn, Z. (2003) Characterization of Hyperbolic Landau States by Coherent State Transforms. Journal of Physics A: Mathematical and General, 36, 8071.
https://doi.org/10.1088/0305-4470/36/29/311
[2]
Aslaksen, E.W. and Klauder, J.R. (1968) Unitary Representations of the Affine Group. Journal of Mathematical Physics, 9, 206-211.
https://doi.org/10.1063/1.1664570
[3]
Aslaksen, E.W. and Klauder, J.R. (1969) Continuous Representation Theory Using the Affine Group. Journal of Mathematical Physics, 10, 2267-2275.
https://doi.org/10.1063/1.1664833
[4]
Pöschl, G. and Teller, E. (1933) Bemerkungen zur Quantenmechanik des anharmonischen Oszillators. Zeitschrift für Physik, 83, 143-151.
https://doi.org/10.1007/BF01331132
[5]
Flügge, S. (1971) Practical Quantum Mechanics. Springer, Berlin.
https://doi.org/10.1007/978-3-642-61995-3
[6]
Barut, A.O. and Girardello, L. (1971) New “Coherent” States Associated with Non Compact Groups. Communications in Mathematical Physics, 21, 41-55.
https://doi.org/10.1007/BF01646483
[7]
de Matos Filho, R.L. and Vogel, W. (1996) Nonlinear Coherent States. Physical Review A, 54, 4560-4563. https://doi.org/10.1103/PhysRevA.54.4560
[8]
Fox, R.F. and Choi, M.H. (2000) Generalized Coherent States and Quantum Classical Correspondence. Physical Review A, 61, Article ID: 032107.
https://doi.org/10.1103/PhysRevA.61.032107
[9]
Hall, B.C. (2000) Holomorphic Methods in Analysis and Mathematical Physics. In: First Summer School in Analysis and Mathematical Physics (Cuernavaca Morelos, 1998), American Mathematical Society, Providence, 1-59.
[10]
Ovando, G., Peña, J.J. and Morales, J.J. (2017) Position-Dependent Mass Schrödinger Equation for the Morse Potential. Journal of Physics: Conference Series, 792, Article ID: 012037. https://doi.org/10.1088/1742-6596/792/1/012037
[11]
Arfken, G. (1985) “Spherical Harmonics” and “Integrals of the Products of Three Spherical Harmonics”. In: Mathematical Methods for Physicists, Academic Press, Orlando, FL, 680-685, 698-700.
[12]
Kowalski, K. and Rembielinski, J. (2000) Quantum Mechanics on a Sphere and Coherent States. Journal of Physics A: Mathematical and General, 33, 6035-6048.
https://doi.org/10.1088/0305-4470/33/34/309
[13]
Gazeau, J.P., Huguet, E., Rey, M.L. and Renaud, J. (2007) Fuzzy Spheres from Inequivalent Coherent States Quantizations. Journal of Physics A: Mathematical and Theoretical, 40, Article ID: 10225. https://doi.org/10.1088/1751-8113/40/33/018
[14]
Calderon, A.P. and Vaillancourt, R. (1972) A Class of Bounded Pseudo Differential Operators. Proceedings of the National Academy of Sciences of the United States of America, 69, 1185-1187. https://doi.org/10.1073/pnas.69.5.1185
[15]
Stoler, D. (1971) Equivalence Classes of Minimum Uncertainty Packets II. Physical Review D, 4, 1925-1926. https://doi.org/10.1103/PhysRevD.4.1925
[16]
Glauber, R. (1968) Fundamental Problems in Statistical Mechanics II. North-Holland Publishing Company, Amsterdam, 140-187.
[17]
Dalui, S., Majhi, B.R. and Mishra, P. (2019) Horizon Provides Instability and Creates Quantum Thermality. Physical Review D, 102, Article ID: 044006.
[18]
Landau, L.D. and Lifshitz, E.M. (2013) Quantum Mechanics (Non-Relativistic Theory): Course on Theoretical Physics. Vol. 3, Elsevier Butterworth-Heinemann, Oxford.
[19]
Bhattacharyya, A., Chemissany, W., Haque, S.S., Murugan, J. and Yan, B. (2020) The Multi-Faceted Inverted Harmonic Oscillator: Chaos and Complexity. arXiv, arXiv: 2007.01232.
[20]
Pabalay, J.R. and Bornales, J.B. (2007) Coupled Harmonic Oscillators: A White Noise Functional Approach. Undergraduate Thesis, Iligan Institute of Technology, Mindanao State University, Iligan.
[21]
Isar, A. (1994) Wigner Distribution for the Harmonic Oscillator within the Theory of Open Quantum Systems. In: Scheid, W. and Sandulescu, A., Eds., Frontier Topics in Nuclear Physics. NATO ASI Series (Series B: Physics), Springer, Boston, 481-482.
[22]
Perepelkin, E.E., Sadovnikov, B.I. and Inozemtseva, N.G. (2017) The New Modified Vlasov Equation or the Systems with Dissipative Processes. Journal of Statistical Mechanics: Theory and Experiment, 2017, Article ID: 053207.
https://doi.org/10.1088/1742-5468/aa6c80
[23]
Nieto, M. and Simmons Jr., L.M. (1978) Coherent States for General Potentials. Physical Review Letters, 41, 207-210. https://doi.org/10.1103/PhysRevLett.41.207
[24]
Gradshteyn, I.S. and Ryzhik, I.M. (2000) Table of Integrals, Series, and Products. Academic Press, New York.
[25]
Casado, A., Guerra, S. and Plácido, J. (2019) From Stochastic Optics to the Wigner Formalism: The Role of the Vacuum Field in Optical Quantum Communication Experiments. Atoms, 7, Article No. 76. https://doi.org/10.3390/atoms7030076
[26]
Casado, A., Guerra, S. and Plácido, J. (2008) Wigner Representation for Experiments on Quantum Cryptography Using Two-Photon Polarization Entanglement Produced in Parametric Down-Conversion. Journal of Physics B: Atomic, Molecular and Optical Physics, 41, Article ID: 045501. https://doi.org/10.1088/0953-4075/41/4/045501
[27]
Rundle, R.P., Tilma, T., Samson, J.H., Dwyer, V.M., Bishop, R.F. and Everitt, M.J. (2019) General Approach to Quantum Mechanics as a Statistical Theory. Physical Review A, 99, Article ID: 012115. https://doi.org/10.1103/PhysRevA.99.012115
[28]
Andersen, U., Neergaard-Nielsen, J., van Loock, P., et al. (2015) Hybrid Discrete- and Continuous-Variable Quantum Information. Nature Physics, 11, 713-719.
https://doi.org/10.1038/nphys3410
[29]
Cohen, L. (1995) Time-Frequency Analysis. Prentice Hall, Englewood Cliffs.
[30]
Zayed, A. (2019) A New Perspective on the Two-Dimensional Fractional Fourier Transform and Its Relationship with the Wigner Distribution. Journal of Fourier Analysis and Applications, 25, 460-487. https://doi.org/10.1007/s00041-017-9588-9
[31]
Claasen, T.A.C.M. and Mecklenbrauker, W.F.G. (1980) The Wigner Distribution—A Tool for Time-Frequency Signal Analysis. Part II: Discrete-Time Signals. Philips Journal of Research, 35, 276-300.
[32]
Moyal, J.E. (1949) Quantum Mechanics as a Statistical Theory. Mathematical Proceedings of the Cambridge Philosophical Society, 45, 99-124.
https://doi.org/10.1017/S0305004100000487