全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Geochemistry of Magmatic Rocks of the Syama Belt, Southern Mali, West African Craton

DOI: 10.4236/ojg.2022.123014, PP. 250-272

Keywords: Syama Belt, Magmatic Rocks, MORB, Boualé-Mossi Domain, Southern Mali, West African Craton (WAC)

Full-Text   Cite this paper   Add to My Lib

Abstract:

Within southern Mali, the Syama belt constitutes a linear major structure-oriented N-S, which host several gold deposits (e.g., Syama and Tabakoroni) and prospect areas (e.g. Tellem). The Syama Belt is formed by magmatic rocks (basalts, lamprophyres, andesites, dacites and microgranites); sedimentary rocks (shales) and volcano-sedimentary rocks (pyroclastics). The magmatic rocks are divided into two main volcanic series: tholeiitic affinity rocks (basalts and lamprophyres) and calc-alkaline affinity (andesites) that are the most evolved. The field relationships between rocks of these two series suggest that the calc-alkaline series are younger the tholeiitic series. These tholeiitic series present the Mid-Ocean Ridge Basalt (MORB) affinity whereas the calc-alkaline series would be linked to an island arc-type. This coexistence is not an isolated case within the West African Craton (WAC). Otherwise, the Syama belt has all the characteristics of other belts, within which a number of gold deposits are developed, in the WAC.

References

[1]  Rocci, G. (1966) Essai d’interprétation des mesures géochronologiques de la structure de l’Ouest africain. Science Terre, 10, 3-4.
[2]  Abouchami, W., Boher, M., Michard, A. and Albarède, F. (1990) A Major 2.1 Ga Event of Mafic Magmatism in West Africa: An Early Stage of Crustal Accretion. Journal of Geophysical Research, 95, 17605-17629.
https://doi.org/10.1029/JB095iB11p17605
[3]  Boher, M., Abouchami, W., Michard, A., Albarede, F. and Arndt, N.T. (1992) Crustal Growth in West Africa at 2.1 Ga. Journal of Geophysical Research: Space Physics, 97, 345-369.
https://doi.org/10.1029/91JB01640
[4]  Potrel, A., Peucat, J. and Fanning, C. (1998) Archean Crustal Evolution of the West African Craton: Example of the Amsaga Area (Reguibat Rise). U-Pb and Sm-Nd Evidence for Crustal Growth and Recycling. Precambrian Research, 90, 107-117.
https://doi.org/10.1016/S0301-9268(98)00044-8
[5]  Lompo, M. (2010) Paleoproterozoic Structural Evolution of the Man-Leo Shield (West Africa). Key Structures for Vertical to Transcurrent Tectonics. Journal of African Earth Sciences, 58, 19-36.
https://doi.org/10.1016/j.jafrearsci.2010.01.005
[6]  Pouclet, A., Vidal, M., Delor, C., Simeon, Y. and Alric, G. (1996) Le volcanisme birimien du nord-est de la Cote-d’Ivoire, mise en évidence de deux phases volcanotectoniques distinctes dans l’évolution géodynamique du Paléoprotérozoique. Bulletin de la Société géologique de France, 167, 529-541.
[7]  Pawlig, S., Gueye, M., Klischies, R., Schwarz, S., Wemmer, K. and Siegesmund, S. (2006) Geochemical and Sr-Nd Isotopic Data on Birimian Formations of the Kédougou Kenieba Inlier (Eastern Senegal): Implications on the Paleoproterozoic Evolution of the West African Craton. South African Journal of Geology, 109, 411-442.
https://doi.org/10.2113/gssajg.109.3.411
[8]  Augustin, J. and Gaboury, D. (2017) Paleoproterozoic Plume-Related Basaltic Rocks in the Mana Gold District in Western Burkina Faso, West Africa: Implications for Exploration and the Source of Gold in Orogenic Deposits. Journal of African Earth Sciences, 129, 17-30.
https://doi.org/10.1016/j.jafrearsci.2016.12.007
[9]  Dia, A. (1988) Caractères et signification des complexes magmatiques et métamorphiques du secteur de Sandikounda-Laminia (Nord de la boutonnière de Kédougou, Est du Sénégal): Un modèle géodynamique du Birimien de l’Afrique de l’Ouest. Unpublished Ph.D. Thesis, Université de Dakar, Sénégal, 350.
[10]  Sylvester, P.J. and Attoh, K. (1992) Lithostratigraphy and Composition of 2.1 Ga Greenstone 197 Belts of the West African Craton and Their Bearing on Crustal Evolution and the Archean-Proterozoic Boundary. Journal of Geology, 100, 377-393.
https://doi.org/10.1086/629593
[11]  Salah, A., Liégeois, J.P. and Pouclet, A. (1996) Evolution d’un arc insulaire océanique birimien précoce au Liptako nigérien (Sirba): Géochronologie et géochimie. Journal of African Earth Science, 22, 235-254.
https://doi.org/10.1016/0899-5362(96)00016-4
[12]  Baratoux, L., Metelka, V., Naba, S., Jessell, M.W., Grégoire, M. and Ganne, J. (2011) Juvenile Paleoproterozoic Crust Evolution during the Eburnean Orogeny (~2.2-2.0 Ga), Western Burkina-Faso. Precambrian Research, 191, 18-45.
https://doi.org/10.1016/j.precamres.2011.08.010
[13]  Béziat, D., Bourges, F., Débat, P., Lompo, M., Martin, F. and Tollon, F. (2000) A Paleoproterozoic Ultramafic-Mafic Assemblage and Associated Volcanic Activity in the West African Craton. Precambrian Research, 10, 25-47.
https://doi.org/10.1016/S0301-9268(99)00085-6
[14]  Soumaila, A., Henry, P. and Rossy, M. (2004) Contexte de mise en place des roches basiques de la ceinture de roches vertes birimiennes de Diagorou-Darbani (Liptako, Niger Afrique de l’Ouest); plateau océanique ou environnement d’arc/bassin arrière-arc océanique. Comptes Rendus de l’Académie des Sciences, 336, 1137-1147.
https://doi.org/10.1016/j.crte.2004.03.008
[15]  Dampare, S.B., Shibata, T., Asiedu, D.K., Osa, S. and Banoeng-Yakubo, B. (2008) Geochemistry of Paleoproterozoic Metavolcanic Rocks from the Southern Ashanti Volcanic Belt Ghana: Petrogenetic and Tectonic Setting Implications. Precambrian Research, 162, 403-423.
https://doi.org/10.1016/j.precamres.2007.10.001
[16]  De Kock, G.S., Théveniaut, H., Botha, P.M.W. and Gyapong, W. (2012) Timing the Structural Events in the Paleoproterozoic Bolé-Nangodi Belt Terrane and Adjacent Maluwe Basin, West African Craton, in Central-West Ghana. Journal of African Earth Sciences, 65, 1-24.
https://doi.org/10.1016/j.jafrearsci.2011.11.007
[17]  Senyah, G.A., Dampare, S.B. and Asiedu, D.K. (2016) Geochemistry and Tectonic Setting of the Paleoproterozoic Metavolcanic Rocks from the Chirano Gold District, Sefwi Belt, Ghana. Journal of African Earth Sciences, 122, 32-46.
https://doi.org/10.1016/j.jafrearsci.2015.07.022
[18]  Olson, S.F., Diakité, K., Ott, L., Guindo, A., Forb, C.R.B., Winer, N., Hanssen, E., Lay, N., Bradley, R. and Pohl, D. (1992) Proterozoic Syama Gold Deposit, Mali West Africa. Economic Geology, 84, 310-331.
https://doi.org/10.2113/gsecongeo.87.2.310
[19]  Traoré, D.Y. (2017) Etude métallogénique du district aurifère de Syama (Mali): Analyse comparative de gisements situés sur une même structure lithosphérique éburnéenne. Thèse de doctorat, Université de Toulouse 3 Paul Sabatier, 297.
[20]  Gozol, A., Diène, M., Diallo, D.P., Dioh, E., Gueye, M. and N’diaye, P.M. (2015) Petrological and Structural Approach to Understanding the Mechanism of Formation and Development of Paleoproterozoic Calc-Alkaline Volcanic Rocks of West Africa’s Craton: An Example of the Mako and Foulde Groups (Kedougou Inlier in Western Senegal). International Journal of Geoscience, 6, 675-691.
https://doi.org/10.4236/ijg.2015.67055
[21]  Diarra, P.H. (1996) The Geology and Genesis of the Syama Gold Deposit, Mali, West Africa. Thesis Department of Geology, Faculty of Science, University of Southampton, Southampton.
[22]  Bassot, J.P. and Dommanget, A. (1986) Mise en evidence d’un accident majeur affectant le protérozoique inférieur des confins sénégalo-maliens. Comptes Rendus de l’Académie des Sciences, 302, 1101-1106.
[23]  Koné, A.Y., Nasr, I.H., Traoré, B., Amiri, A., Inoubli, M.H., Sangaré, S. and Qaysi, S. (2021) Geophysical Contributions to Gold Exploration in Western Mali According to Airborne Electromagnetic Data Interpretations. Minerals, 11, Article No. 126.
https://doi.org/10.3390/min11020126
[24]  Markwitz, V., Hein, A.A.K., Jessell, M.W. and Millier, J. (2016) Metallogenic Portfolio of the West Africa Craton. Ore Geology Review, 78, 558-563.
https://doi.org/10.1016/j.oregeorev.2015.10.024
[25]  Sangaré, A., Driouch, Y., Salvi, S., Femenias, O., Féménias, Siebenaller, L., Belkasmi, M., Béziat, D., Dahire, M., Ntarmouchant, A., Adil, S. and Débat, P. (2014) Géologique des minéralisations aurifères du gisement tardi-éburnéen de Kalana (Birimien, Sud-Ouest du Mali). Bulletin de l’Institut scientifique, 36, 85-108.
[26]  Traoré, D.Y., Siebenaller, S., Béziat, D. and Bouaré, M.L. (2016) Progressive Gold Mineralization along the Syama Corridor, Southern Mali (West Africa). Ore Geology Review, 78, 586-598.
https://doi.org/10.1016/j.oregeorev.2015.11.003
[27]  Traoré, D.Y., Bouaré, M.L., Béziat, D., Coulibaly, S. and Koné, A.Y. (2020) Minéralisation de trois gisements aurifère birimiens (Syama, Tabakoroni et Tellem) sur la ceinture de Bagoé au Mali. 11ieme Symposium Malien sur les Sciences Appliquées (MSAS 2020), Vol. 2, 628-634.
[28]  Kushnir, I. (1999) Gold in Mali. Acta Monanistika, 4, 311-318.
[29]  Milési, J.P., Feybesse, J.L., Ledru, P., Dommaget, A., Ouédraogo, M.F., Marcoux, E., Prost, A., Vichon, C., Sylvain, J.P., Johan, V., Tegyey, M., Calvex, J.Y., Lagny, P., Abouchami, W., Ankrah, P., Boher, M., Diallo, M., Fabre, M., Henry, C., Lapierre, H., Pons, J., Thiéblemont, D., Touré, S. and Morel, B. (1989) Les minéralisations aurifères de l’Afrique de l’Ouest. Chronique Recherche Minière, 497, 3-98.
[30]  Girard, P., Goulet, N. and Malo, M. (1998) Synthèse des données géologiques et cartographie, 233 Amélioration et Modernisation du centre de documentation, Géologie du Mali. Rapport final, 234, partie II.
[31]  Standing, J. (2005) Geological and Structural Mapping in the Syama-Finkolo Prospect Area, Mali, West Africa. Confidential Report by Jigsaw Geoscience Pty Ltd. to Resolute Mining Limited, 29.
[32]  Ballo, I., Hein, A.A.K., Guindo, B., Sanogo, L., Ouologuem, Y., Daou, G. and Traoré, A. (2016) The Syama and Tabakoroni Gold Fields, Mali. Ore Geology Reviews, 78, 578-585.
https://doi.org/10.1016/j.oregeorev.2015.10.019
[33]  Le Bas, M.J. and Streckeisen, A.L. (1991) The IUGS Systematics of Igneous Rocks. Journal of Geological Society of London, 148, 825-833.
https://doi.org/10.1144/gsjgs.148.5.0825
[34]  Shan, S.J. (1943) The Eruptive Rocks. 2nd Edition, John Wiley, New York, 444 p.
[35]  Le Bas, M.J., Lemaitre, R.W., Streckeisen, A. and Zanettin, B. (1986) Une classification chimique des roches volcaniques basée sur le diargramme de silice alcaline totale. Journal de Pétrologie, 27, 745-750.
https://doi.org/10.1093/petrology/27.3.745
[36]  Cann, J.R. (1970) Rb, Sr, Y, Zr and Nb in Some Ocean Floor Basaltic Rocks. Earth and Planetary Science Letters, 10, 7-11.
https://doi.org/10.1016/0012-821X(70)90058-0
[37]  Condie, K.C. (2005) High Field Strength Element Ratios in Archean Basalts: A Window to Evolving Sources of Mantle Plumes? Lithos, 79, 491-504.
https://doi.org/10.1016/j.lithos.2004.09.014
[38]  Manya, S., Makenya, A., Maboko, H. and Nakamura, E. (2007) The Geochemistry of High-Mg Andesite and Associated Adakitic Rocks in the Usoma-Mara Greenstone Belt, Northern Tanzania: Possible Evidence for Neoarchean Ridge Subduction? Precambrian Research, 159, 241-259.
https://doi.org/10.1016/j.precamres.2007.07.002
[39]  Miyashiro, A. (1978) Nature of Alkaline Volcanic Rock Series. Contributions to Mineralogy and Petrology, 66, 91-104.
https://doi.org/10.1007/BF00376089
[40]  McDonough, W.F. and Sun, S.S. (1995) The Composition of the Earth. Chemical Geology, 120, 223-253.
https://doi.org/10.1016/0009-2541(94)00140-4
[41]  Sun, S.S. and McDonough, W.F. (1989) Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. In: Saunders, A.D. and Norry, M.J., Eds., Magmatism in the Ocean Basins, Geological Society, Special Publication No. 42, London, 313-345.
https://doi.org/10.1144/GSL.SP.1989.042.01.19
[42]  Weaver, B.L. and Tarney, J. (1981) The Scourie Dyke Suite: Petrogenesis and Geochemical Nature of the Proterozoic Sub-Continental Mantle. Contributions to Mineralogy and Petrology, 78, 175-188.
https://doi.org/10.1007/BF00373779
[43]  Barrett, T.J. and MacLean, W.H. (1997) Volcanic Sequences, Litho-Geochemistry and Hydrothermal Alteration in Some Bimodal VMS Systems. In: Barrie, C.T. and Hannington, M.D., Eds., Volcanics-Associated Massive Sulfide Deposits: Processes and Examples in Modern and Ancient Settings, GeoScienceWorld, Alexandria, 105-133.
[44]  Rock, N.M.S. (1987) The Nature and Origin of Lamprophyres: An Overview. In Fitton, J.G. and Upton, B.G.J., Eds., Alkaline Igneous Rocks, Geological Society Special Publications No. 30, London, 191-226.
https://doi.org/10.1144/GSL.SP.1987.030.01.09
[45]  Béziat, D., Bourges, F., Ddébat, P., Lompo, M., Tollon, F. and Zonou, S. (1998) Albitites et listvénites: Sites de concentration aurifère inédits dans les ceintures de roches vertes birimiennes fortement hydrothermalisées du Burkina Faso. Bulletin de la Société géologique de France, 169, 563-571.
[46]  Karsli, O., Dokuz, A., Kaliwoda, M., Uysal, I., Aydin, F., Kandemir, R. and Fehr, K.T. (2014) Geochemical Fingerprints of Late Triassic Calc-Alkaline Lamprophyres from the Eastern Pontides, NE Turkey: A Key to Understanding Lamprophyre Formation in a Subduction-Related Environment. Lithos, 196, 181-197.
https://doi.org/10.1016/j.lithos.2014.02.022
[47]  Orozco-Garza, A., Dostal, J., Keppie, J.D. and Paz-Moreno, F.A. (2013) Mid-Tertiary (25-21 Ma) Lamprophyres in NW Mexico Derived from Subduction-Modified Subcontinental Lithospheric Mantle in an Extensional Back Arc Environment Following Steepening of the Benioff Zone. Tectonophysics, 590, 59-71.
https://doi.org/10.1016/j.tecto.2013.01.013
[48]  Chen, Y., Yao, S. and Pan, Y. (2014) Geochemistry of Lamprophyres at the Daping Gold Deposit, Yunnan Province China: Constraints on the Timing of Gold Mineralization and Evidence for Mantle Convection in the Eastern Tibetan Plateau. Journal of Asian Earth Sciences, 93, 129-145.
https://doi.org/10.1016/j.jseaes.2014.07.033
[49]  Ross, P.S. and Bédard, J.H. (2009) Magmatic Affinity of Modem and Ancient Sub Alkaline Volcanic Rocks Determined from Trace Element Discriminant Diagrams. Canadian Journal of Earth Sciences, 464, 823-839.
https://doi.org/10.1139/E09-054
[50]  Polat, A. and Kerrich, R. (2002) Nd-Isotope Systematics of ~2.7 Ga Adakites, Magnesian Andesites, and Arc Basalts, Superior Province: Evidence for Shallow Crustal Recycling at Archean Subduction Zones. Earth and Planetary Science Letters, 202, 345-360.
https://doi.org/10.1016/S0012-821X(02)00806-3
[51]  Hollings, P. and Kerrich, R. (2004) Geochemical Systematics of Tholeiites from 2.86 Ga Pickle Crow Assemblage, Northwestern Ontario: Arc Basalts with Positive and Negative Nb-Hf Anomalies. Precambrian Research, 134, 1-20.
https://doi.org/10.1016/j.precamres.2004.05.009
[52]  Pearce, J.A. and Peate, D.W. (1995) Tectonic Implications of the Composition of Volcanic Arc Magmas. Earth and Planetary Sciences, 23, 251-285.
https://doi.org/10.1146/annurev.ea.23.050195.001343
[53]  Manikyamba, C., Kerrich, R., Naqvi, S.M. and Ram Mohan, M. (2004) Geochemical Systematics of Tholeiitic Basalt from the 2.7 Ga Ramagiri-Hungund Composite Greenstone Belt, Dharwar Craton. Precambrian Research, 134, 21-39.
https://doi.org/10.1016/j.precamres.2004.05.010
[54]  Kerr, A.C. and Mahoney, J.J. (2007) Oceanic Plateaus: Problematic Plumes, Potential Paradigms. Chemical Geology, 241, 332-353.
https://doi.org/10.1016/j.chemgeo.2007.01.019
[55]  Velásquez, G. (2012) First Occurrence of Paleoproterozoic Oceanic Plateau in the Guinea Shield: The Gold-Bearing El Callao Formation, Venezuela. Thèse Doct, Université Paul Sabatier, Toulouse.
[56]  Sangaré, A. (2008) Les roches ultramafiques et mafiques paléoprotérozoiques de la ceinture de roches vertes de Kadiolo (Mali). Pétrologie, évolution et ressources minérales associées. Master Géosciences et Ressources Minérales. Université Sidi Mohamed Ben Abdellah, 60 p.
[57]  Dioh, E., Béziat, D., Débat, P., Grégoire, M. and Ngom, M. (2006) Diversity of the Paleoproterozoic Granitoids of the Kédougou Inlier (Eastern Senegal): Petrographical and Geochemical Constraints. Journal of African Earth Science, 44, 351-371.
https://doi.org/10.1016/j.jafrearsci.2005.11.024
[58]  Lahondère, D., Thiéblemont, D., Tegyey, M., Guerrot, C. and Diabaté, B. (2002) First Evidence of Early Birimian (2.21 Ga) Volcanic Activity in Upper Guinea: The Volcanics and Associated Rocks of the Niani Suite. Journal of African Earth Sciences, 35, 417-431.
https://doi.org/10.1016/S0899-5362(02)00145-8
[59]  McNeil, A.M. and Kerrich, R. (1986) Archean Lamprophyre Dikes and Gold Mineralization, Ontario. The Conjunction of LILE-Enriched Magmas, Deep Crustal Structures and Gold Concentrations. Journal of Earth Science, 23, 324-343.
https://doi.org/10.1139/e86-035
[60]  Barley, M.E., Eisenlohr, B.N., Groves, D.I., Perring, C.S. and Vearncombe, J.R. (1989) Late Archean Convergent Margin Tectonics and Gold Mineralization: A New Look at the Norseman Wiluna Belt. Western Australia Geology, 17, 826-829.
https://doi.org/10.1130/0091-7613(1989)017<0826:LACMTA>2.3.CO;2

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133