|
温度梯度下液桥紧缩过程的模拟研究
|
Abstract:
起着关键的影响。本文通过数值模拟分析了表面张力梯度和粘性力梯度对液桥在微重力环境下紧缩过程的作用。通过分析四个时刻的自由面轮廓、轴向速度和压强以及断裂时刻液桥速度和压强云图,阐明了液桥的断裂点位于表面张力较大或粘性力较小一侧的形成机理。同时随着表面张力梯度的增大液桥的轴向速度和压强的梯度也增大。最后分析了在表面张力梯度和粘性力梯度同时作用下,表面张力和粘性力的抗衡作用直接影响液桥的轮廓,最后断裂时刻液桥形态结合了仅表面张力梯度作用下的长锥型和仅粘性力梯度作用下的细丝状。该研究为实际工业应用中液桥在温度梯度下的断裂问题提供了模拟基础。
The shrinkage of liquid bridge with temperature gradient is a common phenomenon in nature and industrial production. The fracture behavior of liquid bridge plays a key role in the process of printing and inkjet. In this paper, the effects of surface tension gradient and viscous force gradient on the contraction process of liquid bridge in microgravity environment are analyzed by numerical simulation. By analyzing the free surface profile, axial velocity and pressure at four times and the cloud diagram of liquid bridge velocity and pressure at the time of fracture, the formation mechanism of the fracture point of liquid bridge on the side with large surface tension or small viscous force is clarified. At the same time, with the increase of surface tension gradient, the gradient of axial velocity and pressure of liquid bridge also increases. Finally, it is analyzed that under the simultaneous action of surface tension gradient and viscous force gradient, the counterbalance effect of surface tension and viscous force directly affects the profile of the liquid bridge. Finally, the shape of the liquid bridge at the time of fracture combines the long cone type under the action of surface tension gradient only and the filament type under the action of viscous force gradient only. This study provides a simulation basis for the fracture of liquid bridge under temperature gradient in practical industrial application.
[1] | 钟源. 液滴撞击不同固体表面动力学特性及热毛细迁移研究[D]: [硕士学位论文]. 南昌: 南昌大学, 2019. |
[2] | Mateos, A., Dopazo, J. and Jansen, R. (2002) Systematic Learning of Gene Functional Classes from DNA Array Expression Data By Using Multilayer Perceptrons. Genome Research, 12, 1703-1715. https://doi.org/10.1101/gr.192502 |
[3] | 彭岚, 李友荣, 曾丹苓, 王忠. 液封液桥内热毛细对流[J]. 力学学报, 2006, 38(5): 593-598. |
[4] | Sun, S., Yang,, M. and Kostov, Y. (2010) Elisa-Loc: Lab-on-a-Chip for Enzyme-Linked Immunodetect-Ion. Lab on a Chip, 10, 2093. https://doi.org/10.1039/c003994b |
[5] | 张朔婷, 胡良, 段俐, 康琦. 多液滴热毛细迁移的研究[J]. 力学学报, 2014, 46(5): 802-806. |
[6] | Brady, P.T., Hermann, M. and Lopez, J.M. (2011) Confined Themocapillary Motion of a Three-Dimensional Deformable Drop. Physics of Fluids, 23, Article ID: 022101. https://doi.org/10.1063/1.3529442 |
[7] | 吴永强, 段俐, 李永强, 康琦. 大普朗特数大液桥浮力-热毛细对流地面实验[J]. 力学学报, 2012, 44(6): 981-989. |
[8] | Kumar, S. (2014) Liquid Transfer in Printing Processes: Liquid Bridges with Moving Contact Lines. Annual Review of Fluid Mechanics, 47, 67-94. https://doi.org/10.1146/annurev-fluid-010814-014620 |
[9] | Basaran, O.A., Gao, H.J. and Bhat, P.P. (2013) Non-standard Inkjets. Annual Review of Fluid Mechanics, 45, 85-133.
https://doi.org/10.1146/annurev-fluid-120710-101148 |
[10] | Zhao, J.Y., Zhou, N., Zhang, K.X. and Liu, Y. (2020) Study on Stretching Liquid Bridges with Symmetric and Asymmetric Surface Wettability. Physical Review Fluids, 5, Ar-ticle ID: 064003.
https://doi.org/10.1103/PhysRevFluids.5.064003 |
[11] | Castrejon-Pita, J.R., Castrejon-Pita, A.A., Thete, S.S., Sambath, K., Hutchings, L.M., Hinch, J., Lister, J.R. and Basaran, O.A. (2015) Plethora of Transitions during Breakup of Liquid Filaments. PNAS, 112, 15.
https://doi.org/10.1073/pnas.1418541112 |