全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

锥形结构表面核态沸腾数值模拟研究
Numerical Simulation of Nucleate Boiling on Conical Surfaces

DOI: 10.12677/MOS.2022.112034, PP. 373-381

Keywords: 锥形结构,格子Boltzmann方法,核态沸腾
Conical Structure
, Lattice Boltzmann Method, Nucleate Boiling

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用最近提出的格子Boltzmann方法,在具有规则排列的锥形结构表面模拟了核态沸腾。结果表明,在锥形结构的表面,障碍物角点处的液体先发生相变,相变只会发生在障碍物形成的凹槽内及角点处。与矩形结构表面相比,在锥形结构表面形成的气泡会完全从壁面脱离。另一方面,对比了不同表面结构间距和结构尺寸对气泡生长和传热性能的影响。当结构间距较大时,气泡从壁面脱离较早,壁面的核态沸腾换热性能较好,也具有较高的临界热流密度。当结构尺寸较大时,气泡从壁面脱离较晚,壁面换热性能变差,临界热流密度减小。
The lattice Boltzmann model is used to simulate nucleate boiling on a conical surface with regular arrangement. The results show that on the conical structure surface, the phase change process occurs firstly at the corners and in the grooves of the obstacle, and does not take place on the obstacle surface. In contrast to the rectangular surface, bubbles which appear on the conical surface completely depart from the wall. On the other hand, the effects of different surface structure space and structure size on bubbles growth and heat transfer performance are compared. For the large structure space, bubbles depart from the wall earlier, the nucleate boiling heat transfer performance is better, and the critical heat flux is higher. For the large structure size, bubbles depart from the wall later, the heat transfer performance becomes worse, and the critical heat flux decreases.

References

[1]  Wen, D. (2012) Influence of Nanoparticles on Boiling Heat Transfer. Applied Thermal Engineering, 41, 2-9.
https://doi.org/10.1016/j.applthermaleng.2011.08.035
[2]  Wang, H., Lou, Q. and Li, L. (2020) Mesoscale Simu-lations of Saturated Flow Boiling Heat Transfer in a Horizontal Microchannel. Numerical Heat Transfer, Part A: Appli-cations, 78, 107-124.
https://doi.org/10.1080/10407782.2020.1786290
[3]  Deng, D., Feng, J., Huang, Q., Tang, Y. and Lian, Y. (2016) Pool Boiling Heat Transfer of Porous Structures with Reentrant Cavities. International Journal of Heat and Mass Transfer, 99, 556-568.
https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.015
[4]  Bernardin, J.D. and Mudawar, I. (2002) A Cavity Activation and Bubble Growth Model of the Leidenfrost Point. Journal of Heat and Mass Transfer, 124, 864-874.
https://doi.org/10.1115/1.1470487
[5]  Kandlikar, S. (2013) Controlling Bubble Motion over Heated Surface through Evaporation Momentum Force to enhance pool boiling heat transfer. Applied Physics Letters, 102, Article ID: 051611.
https://doi.org/10.1063/1.4791682
[6]  Dong, L., Quan, X. and Cheng, P. (2014) An Experimental Investigation of Enhanced Pool Boiling Heat Transfer from Surfaces with Micro/Nano-Structures. International Journal of Heat and Mass Transfer, 71, 189-196.
https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.068
[7]  Ma, X. and Cheng P. (2019) Dry Spot Dynamics and Wet Area Fractions in Pool Boiling on Micro-Pillar and Micro-Cavity Hydrophilic Heaters: A 3D Lattice Boltzmann Phase-Change Study. International Journal of Heat and Mass Transfer, 141, 407-418.
https://doi.org/10.1016/j.ijheatmasstransfer.2019.06.086
[8]  Shen, C., Zhang, C., Bao, Y., et al. (2018) Experi-mental Investigation on Enhancement of Nucleate Pool Boiling Heat Transfer Using Hybrid Wetting Pillar Surface at Low Heat Fluxes. International Journal of Thermal Sciences, 130, 47-58.
https://doi.org/10.1016/j.ijthermalsci.2018.04.011
[9]  Liter, S. and Kaviany, M. (2011) Pool-Boiling CHF Enhancement by Modulated Porous-Layer Coating: Theory and Experiment. International Journal of Heat and Mass Transfer, 44, 4287-4311.
https://doi.org/10.1016/S0017-9310(01)00084-9
[10]  Gong, S. and Cheng, P. (2013) Lattice Boltzmann Simulation of Periodic Bubble Nucleation, Growth and Departure from a Heated Surface in Pool Boiling. International Journal of Heat and Mass Transfer, 64, 122-132.
https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.058
[11]  Gong, S. and Cheng, P. (2015) Lattice Boltzmann Simulations for Surface Wettability Effects in Saturated Pool Boiling Heat Transfer. International Journal of Heat and Mass Transfer, 85, 635-646.
https://doi.org/10.1016/j.ijheatmasstransfer.2015.02.008
[12]  Zhang, C. and Cheng, P. (2017) Mesoscale Simula-tions of Boiling Curves and Boiling Hysteresis under Constant Wall Temperature and Constant Heat Flux Conditions. International Journal of Heat and Mass Transfer, 110, 319-329.
https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.039
[13]  Frita, W. (1935) Maximum Volume of Vapor Bubbles. Physik Zeitschr, 36, 379-384.
[14]  Lou, Q., Guo, Z. and Shi, B. (2013) Evaluation of Outflow Boundary Conditions for Two-Phase Lattice Boltzmann Equation. Physical Review E, 87, Article ID: 063301.
https://doi.org/10.1103/PhysRevE.87.063301
[15]  Ladd, A.J.C. (1994) Numerical Simulations of Particulate Suspensions via a Discretized Boltzmann Equation. Journal of Fluid Mechanics, 271, 285-309.
https://doi.org/10.1017/S0022112094001771
[16]  Zhang, T., Shi, B., Guo, Z., et al. (2012) General Bounce-Back Scheme for Concentration Boundary Condition in the Lattice-Boltzmann Method. Physical Review E, 85, Article IDS: 016701.
https://doi.org/10.1103/PhysRevE.85.016701
[17]  Zhang, C., Cheng, P. and Hong, F. (2016) Mesoscale Simulation of Heater Size and Subcooling Effects on Pool Boiling under Controlled Wall Heat Flux Conditions. International Journal of Heat and Mass Transfer, 101, 1331-1342.
https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.036
[18]  Mu, Y., Chen, L. and He, Y. (2017) Nucleate Boiling Performance Evaluation of Cavities at Mesoscale Level. International Journal of Heat and Mass Transfer, 106, 708-719.
https://doi.org/10.1016/j.ijheatmasstransfer.2016.09.058
[19]  童明伟. 圆锥形传热面上的薄液膜沸腾[J]. 工程热物理学报, 1990(3): 323-327.
[20]  刘永启, 李瑞阳, 郁鸿凌, 王发刚. 圆柱形和三角形电极的EHD强化管内沸腾换热试验研究[J]. 清华大学学报(自然科学版), 2003, 43(12): 1683-1686.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133