|
数据中心空调实验室孔板送风气流组织模拟与分析
|
Abstract:
本文所研究的环境实验室主要应用于间接蒸发冷却空调和直接蒸发冷却空调等产品的性能测试,依据数据机房用单元式空气调节机的测试要求,设计了该实验室室外侧房间的送风结构。该送风结构采用侧送顶回的方式,侧面采用孔板送风,借助数值模拟的方法探究了孔板孔隙率分别为26%、12%和6%时,测试区域速度场和温度场的分布规律,通过分析模拟结果发现,孔隙率的减小对测试区域内温度场的影响十分微弱,随着孔隙率的降低面平均温度下降了0.01 k,而速度场有较为明显的变化,孔隙率为26%时,面平均速度为0.612 m/s,孔隙率为6%时,面平均速度为0.436 m/s。通过观察云图可知,单孔板送风形式下,被测机迎风面风速较高且风速波动大。因此本文提出了双孔板节流的送风形式,在该送风形式下,测试区域内面平均风速下降至0.34 m/s,并且有效改善了被测机迎风面的速度分布。
The environmental laboratory studied in this paper is mainly used in the performance testing of in-direct evaporative cooling air conditioners and direct evaporative cooling air conditioners. Based on the test requirements of the unit air conditioner used in the data room, the air supply structure of the outdoor side room of the laboratory is designed. The air supply structure adopts the method of side supply and top return, and the side adopts orifice plate to supply air. By means of numerical simulation, the distribution rule of the velocity field and temperature field in the test area are investigated when the orifice porosity is 26%, 12% and 6% respectively. According to the analysis and simulation results, it shows that decreased porosity has a very weak effect on the temperature field in the test area. When the porosity is 26%, the average surface velocity is 0.612 m/s, and when 6%, the average surface velocity is 0.436 m/s. By observing the cloud map, it can be seen that in the form of single-hole plate air supply, the wind speed on the windward side of the tested machine is high and the wind speed fluctuates greatly. Therefore, this paper proposes the air supply form of double-orifice plate throttling. Under this air supply form, the average wind speed in the test area drops to 0.34 m/s, and the speed distribution on the windward surface of the tested machine is effectively improved.
[1] | 褚俊杰, 徐伟, 霍慧敏. 数据中心间接蒸发自然冷却空调系统在中国的适用性分析[J]. 制冷与空调(四川), 2021, 35(5): 725-732. |
[2] | 樊亚男. 数据机房不同送风布局气流组织数值模拟研究[J]. 暖通空调, 2021, 51(S1): 105-108. |
[3] | 中国机械工业联合会. GB/T 17758-2010单元式空气调节机[S].中国国家标准化管理委员会, 2010. |
[4] | 中国机械工业联合会. GB/T 19413-2010计算机和数据处理机房用单元式空气调节机[S]. 中国国家标准化管理委员会, 2010. |
[5] | 陆耀庆, 唐世杰, 季伟, 等. 实用供热空调设计手册[Z]. 第2版. 西安: 中国建筑西北设计研究院有限公司, 2010. |
[6] | 尹慧慧. 孔板在列车送风系统中的应用[D]: [硕士学位论文]. 青岛: 青岛理工大学, 2010. |
[7] | 周晟杰, 王溢芳, 舒国安, 等. 人工环境试验室气流组织模拟及优化[J]. 流体机械, 2008, 36(4): 4. |
[8] | ANSYS TurboGrid Introduction. |
[9] | Smith Jr., P.L. and Van Winkle, M. (1958) Discharge Coefficients through Perforated Plates at Reynolds Numbers of 400 to 3,000. AIChE Journal, 4, 266-268. https://doi.org/10.1002/aic.690040306 |
[10] | 金莎, 沈惬, 孙大明, 张学军, 徐雅. 基于CFD方法的孔板送风气流组织优化研究[J]. 低温工程, 2015(1): 23-28. |
[11] | 赵彬, 李先庭, 彦启森. 孔板空调风口送风射流的数值模拟[J]. 力学与实践, 2002(1): 18-21. |
[12] | 路坤, 李征涛, 张婷, 等. 汽车空调焓差实验室温度场均匀性改善分析[J]. 农业装备与车辆工程, 2020(6): 116-120. https://doi.org/10.3969/j.issn.1673-3142.2020.06.024 |