全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

线性菲涅尔式太阳能聚光器传热及能流均匀化研究
Linear Fresnel Solar Concentrator Heat Transfer and Energy Flow Homogenization Research

DOI: 10.12677/MOS.2022.112029, PP. 324-334

Keywords: 线性菲涅尔式太阳能聚光器,传热,热损失,粒子群算法,能流分布
Linear Fresnel Solar System
, Heat Transfer Characteristics, Heat Loss, Particle Swarm Algorithm, Energy flow Distribution

Full-Text   Cite this paper   Add to My Lib

Abstract:

对线性菲涅尔式太阳能聚光器的传热性能进行研究,在该系统下建立传热模型并对吸热管壁面温度、热量损失随传热介质对流换热系数上升时的变化规律进行研究。研究结果表明:当辐射到吸热管表面的能流密度恒定时,随着吸热管内传热介质温度上升和换热系数增加,集热管内壁温度逐渐下降并达到极值,如果继续采用强化传热的方法来降低系统热损,会使得效果逐渐减弱;针对吸热管周向能流非均匀问题,本文提出了一种基于粒子群算法的优化方法,通过改变主镜场中一次反射镜的瞄准点,使得接收器表面能流分布标准偏差达到最小,从而使得吸热管周向的能流分布更加均匀。通过优化使得当系统光学效率达到79.75%时,吸热管上半部分的能流分布由36.6%上升到了39.5%。以上研究结果将为线性菲涅尔式太阳能集热器的优化设计和应用提供理论支撑。
The heat transfer performance of the linear Fresnel solar concentrator is studied, a heat transfer model is established under this system and the variation law of the wall temperature and heat loss of the collector tube with the increase of the convective heat transfer coefficient of the heat transfer medium is studied. The research results show that when the energy flux density radiated to the surface of the collector tube is constant, as the temperature of the heat transfer medium in the collector tube increases and the heat transfer coefficient increases, the temperature of the inner wall of the collector tube gradually decreases and reaches the extreme value. If the method of enhancing heat transfer is continued to reduce the heat loss of the system, the effect will gradually weaken. Aiming at the problem of the non-uniformity of the circumferential energy flow of the collector tube, an optimization method based on particle swarm optimization is proposed. By changing the aiming point of the primary mirror in the primary mirror field, the standard deviation of the energy flow distribution on the receiver surface can be minimized, so that the energy flow distribution in the circumferential direction of the collector tube is more uniform. Through optimization, when the optical efficiency of the system reaches 79.75%, the energy flow distribution in the upper half of the heat absorption tube increases from 36.6% to 39.5%. The above research results will provide theoretical support for the optimal design and application of linear Fresnel solar collectors.

References

[1]  汪晓东, 刘毅, 林小溪. 让绿水青山造福人民泽被子孙——习近平总书记关于生态文明建设重要论述综述[N]. 人民日报, 2021-06-03(10).
[2]  郭子珣, 曹雅妃. 中国可再生能源东中西部差异化发展现状研究[J]. 现代商贸工业, 2021, 42(10): 11-12.
[3]  Wang, Z.F. (2010) Prospectives for China’s Solar Thermal Power Technology Development. Energy, 35, 4417-4420.
https://doi.org/10.1016/j.energy.2009.04.004
[4]  Li, M., Feng, Y.Y., Liu, E.Z., et al. (20160 Azobenzene/Graphene Hybrid for High-Density Solar Thermal Storage by Optimizing Molecular Structure. Science China Technological Sciences, 59, 1383-1390.
https://doi.org/10.1007/s11431-016-6091-5
[5]  Varun, K., Arunachala, U.C. and Elton, D.N. (2020) Trade-Off between Wire Matrix and Twisted Tape: SOLTRACE? Based Indoor Study of Parabolic trough Collector. Renewable Energy, 156, 478-492.
https://doi.org/10.1016/j.renene.2020.04.093
[6]  周凌宇, 代彦军, 李显, 等. 一种采用腔体吸收器的线性菲涅尔太阳集热器性能分析与优化[J]. 太阳能学报, 2018, 39(3): 704-712.
[7]  Reddy, K.S., Veershetty, G. and Srihari Vikram, T. (2016) Effect of Wind Speed and Direction on Convective Heat Losses from Solar Parabolic Dish Modified Cavity Receiver. Solar Energy, 131, 183-198.
https://doi.org/10.1016/j.solener.2016.02.039
[8]  Rea, J.E., Oshman, C.J., Olsen, M.L., et al. (2018) Performance Modeling and Techno-Economic Analysis of a Modular Concentrated Solar Power Tower with Latent Heat Storage. Applied Energy, 217, 143-152.
https://doi.org/10.1016/j.apenergy.2018.02.067
[9]  张丽丽, 杨启岳, 杜强, 等. 线性菲涅尔反射式太阳能热发电系统研究进展及应用[J]. 能源与环境, 2013(6): 44-46.
[10]  Augsburger, G., Das, A.K., Boschek, E., et al. (2016) Thermo-Mechanical and Optical Optimization of the Molten Salt Receiver for a Given Heliostat Field. AIP Conference Proceedings, 1734, Article ID: 030005.
https://doi.org/10.1063/1.4949057
[11]  方勇, 宿建峰, 王娜娜, 等. 塔式太阳能热发电吸热器模拟计算[J]. 发电与空调, 2014, 35(3): 4-8.
[12]  鲁红光, 杨晓军, 马禄彬. 槽式太阳能集热管的传热分析与建模[J]. 绿色科技, 2020(24): 218-220.
[13]  Eck, M., Uhlig, R., Mertins, M., et al. (2007) Thermal Load of Direct Steam-Generating Absorber Tubes with Large Diameter in Horizontal Linear Fresnel Collectors. Heat Transfer Engineering, 28, 42-48.
https://doi.org/10.1080/01457630600985659
[14]  Moghimi, M.A., Craig, K.J. and Meyer, J.P. (2015) A Novel Computational Approach to Combine the Optical and Thermal Modelling of Linear Fresnel Collectors Using the Finite Volume Method. Solar Energy, 116, 407-427.
https://doi.org/10.1016/j.solener.2015.04.014
[15]  刘尧东, 张燕平, 万亮, 高伟. 基于Al2O3纳米流体的槽式太阳能热发电集热器传热建模及性能分析[J]. 发电技术, 2021, 42(2): 230-237.
[16]  赖艳华, 宋固, 吕明新, 董震. 玻璃真空套管-金属管复合接收器集热性能研究[J]. 工程热物理学报, 2011, 32(5): 867-870.
[17]  Montes, M.J., Barbero, R., Abbas, R., et al. (2016) Performance Model and Thermal Comparison of Different Alternatives for the Fresnel Single-Tube Receiver. Applied Thermal Engineering, 104, 162-175.
https://doi.org/10.1016/j.applthermaleng.2016.05.015
[18]  冯茜, 李擎, 全威, 裴轩墨. 多目标粒子群优化算法研究综述[J]. 工程科学学报, 2021, 43(6): 745-753.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133