|
Medical Diagnosis 2022
畅脉乐I号胶囊治疗动脉粥样硬化的网络药理学作用机制
|
Abstract:
【目的】应用网络药理学的方法探讨畅脉乐I号胶囊(CML)治疗动脉粥样硬化(AS)的作用机制。【方法】通过TCMSP、Genecards、OMIM和DisGeNET数据库结合文献检索获取CML活性成分与靶点及疾病相关靶点,经Uniprot数据库对选取靶点标准化后利用jvenn筛选成分基因与疾病基因的交集基因,导入Cytoscape3.8.2软件构建活性成分–疾病靶点网络与靶点间蛋白–蛋白相互作用(PPI)网络;通过Metascape平台对交集基因进行基因本体(GO)富集分析以及京都基因和基因组百科全书(KEGG)通路富集分析。【结果】筛选出CML活性成分116个活性成分及480个成分靶点,AS疾病靶点2358个,主要活性成分为槲皮素、白藜芦醇、刺芒柄花素、木犀草素、异鼠李素、黄芩素、丹参酮II等。将药物靶点与疾病靶点取交集共得到182个交集基因,用交集基因构建PPI网络。这些基因主要与细胞对脂质的反应、对氧气水平的反应、对细胞因子的反应等生物进程有关,它们的分子功能主要与激酶结合、DNA结合转录因子结合、蛋白质同二聚化活性、蛋白质结构域特异性结合等相关,主要富集在膜筏、转录调节复合物、受体复合物等部位。【结论】CML通过多成分、多靶点以及多途径参与防治AS过程,其药效物质AGE-RAGE信号通路、FoxO信号通路、NF-κB信号通路、JAK-STAT信号通路等发挥效应,以上数据为CML进一步的临床应用及基础研究提供参考依据。
Objective: To apply the method of network pharmacology to explore the mechanism of Chang Mai-Le I Capsule (CML) in the treatment of atherosclerosis (AS). Methods: The active ingredient-target and disease-related targets of CML were obtained through TCMSP, Genecards, OMIM and DisGeNET databases combined with literature search, and the selected targets were standardized by Uniprot database and then screened by jvenn for the intersection of ingredient genes and disease genes, and imported into Cytoscape 3.8.2 software to construct the active ingredient-disease target network and target network. The intersecting genes were enriched for gene ontology (GO) and Kyoto Gene and Genome Encyclopedia (KEGG) pathways through the Metascape platform. Results: The 116 active ingredients and 480 component targets of CML were screened, and 2358 AS disease targets were identified, with the main active ingredients being quercetin, resveratrol, prickly mangosteen, lignan, isorhamnetin, baicalin and tanshinone II. A total of 182 intersecting genes were obtained by taking the intersection of drug targets and disease targets, and the intersecting genes were used to construct the PPI network. These genes were mainly related to biological processes such as cellular responses to lipids, responses to oxygen levels, and responses to cytokines. Their molecular functions were mainly related to kinase binding, DNA-binding transcription factor binding, protein homodimerization activity, and protein structural domain-specific binding, and were mainly enriched in sites such as membrane rafts, transcriptional regulatory complexes, and receptor complexes. Conclusion: CML is involved in the prevention and treatment of AS through multiple components, multiple targets and multiple pathways, and its pharmacological substances AGE-RAGE signaling pathway, FoxO signaling pathway, NF-κB signaling pathway and JAK-STAT signaling pathway exert effects. The above data provide a
[1] | 安冬青, 吴宗贵. 动脉粥样硬化中西医防治专家共识(2021年) [J/OL]. 中国中西医结合杂志, 1-7[2022-03-07].
http://kns.cnki.net/kcms/detail/11.2787.r.20211029.1155.002.html |
[2] | 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2020概要[J]. 中国循环杂志, 2021, 36(6): 521-545. |
[3] | Mach, F., Baigent, C., Catapano, A.L., Koskinas, K.C., Casula, M., Badimon, L., et al. (2020) 2019 ESC/EAS Guidelines for the Management of Dyslipidaemias: Lipid Modification to Reduce Cardiovascular Risk. European Heart Journal, 41, 111-188. https://doi.org/10.1093/eurheartj/ehz455 |
[4] | 李英, 龚宝莹, 朱建华, 朱婉华, 郭建文. 国医大师朱良春从痰瘀论治颈动脉不稳定斑块的学术经验[J]. 中国实验方剂学杂志, 2021, 27(23): 195-200. |
[5] | Ru, J., Li, P., Wang, J., Zhou, W., Li, B., Huang, C., et al. (2014) TCMSP: A Database of Systems Pharmacology for Drug Discovery from Herbal Medicines. Journal of Cheminformatics, 6, Article No. 13.
https://doi.org/10.1186/1758-2946-6-13 |
[6] | Li, J., Zhao, P., Li, Y., Tian, Y. and Wang, Y. (2015) Systems Pharmacology-Based Dissection of Mechanisms of Chinese Medicinal Formula Bufei Yishen as an Effective Treatment for Chronic Obstructive Pulmonary Disease. Scientific Reports, 5, Article No. 15290. https://doi.org/10.1038/srep15290 |
[7] | Daina, A., Michielin, O. and Zoete, V. (2017) SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Scientific Reports, 3, Article No. 42717.
https://doi.org/10.1038/srep42717 |
[8] | Daina, A., Michielin, O. and Zoete, V. (2019) Swiss Target Prediction: Updated Data and New Features for Efficient Prediction of Protein Targets of Small Molecules. Nucleic Acids Research, 47, W357-W364.
https://doi.org/10.1093/nar/gkz382 |
[9] | Soudy, M., Anwar, A.M., Ahmed, E.A., Osama, A., Ezzeldin, S., Mahgoub, S., et al. (2020) UniprotR: Retrieving and Visualizing Protein Sequence and Functional Information from Universal Protein Resource (UniProt Knowledgebase). Journal of Proteomics, 213, Article ID: 103613. https://doi.org/10.1016/j.jprot.2019.103613 |
[10] | Safran, M., Dalah, I., Alexander, J., Rosen, N., Iny Stein, T., Shmoish, M., et al. (2010) GeneCards Version 3: The Human Gene Integrator. Database, 2010, Article No. baq020. https://doi.org/10.1093/database/baq020 |
[11] | Hamosh, A., Amberger, J.S., Bocchini, C., Scott, A.F. and Rasmussen, S.A. (2021) Online Mendelian Inheritance in Man (OMIM?): Victor McKusick’s Magnum Opus. American Journal of Medical Genetics Part A, 185, 3259-3265.
https://doi.org/10.1002/ajmg.a.62407 |
[12] | Pi?ero, J., Ramírez-Anguita, J.M., Saüch-Pitarch, J., Ronzano, F., Centeno, E., Sanz, F., et al. (2020) The DisGeNET Knowledge Platform for Disease Genomics: 2019 Update. Nucleic Acids Research, 48, D845-D855.
https://doi.org/10.1093/nar/gkz1021 |
[13] | Bardou, P., Mariette, J., Escudié, F., Djemiel, C. and Klopp, C. (2014) jvenn: An interactive Venn Diagram Viewer. BMC Bioinformatics, 15, Article No. 293. https://doi.org/10.1186/1471-2105-15-293 |
[14] | Otasek, D., Morris, J.H., Bou?as, J., Pico, A.R. and Demchak, B. (2019) Cytoscape Automation: Empowering Workflow-Based Network Analysis. Genome Biology, 20, Article No. 185. https://doi.org/10.1186/s13059-019-1758-4 |
[15] | Zhou, Y.Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A.H., Tanaseichuk, O., et al. (2019) Metascape Provides a Biologist-Oriented Resource for the Analysis of Systems-Level Datasets. Nature Communications, 10, Article No. 1523. https://doi.org/10.1038/s41467-019-09234-6 |
[16] | 陈美华, 赵红佳, 林求诚, 黄飞翔, 张惠敏. 畅脉乐胶囊消退颈动脉粥样硬化斑块的疗效观察(附82例报告) [J]. 福建医药杂志, 2001, 23(5): 1-3. |
[17] | 谢胜伟, 陈美华. 畅脉乐胶囊对颈动脉粥样硬化大鼠Wnt信号通路的影响[J]. 新中医, 2020, 52(21): 10-12. |
[18] | 陈美华, 谢胜伟. 益气活血化痰中药“畅脉乐胶囊”治疗颈动脉粥样硬化的临床研究[C]//中华中医药学会心病分会. 中华中医药学会心病分会全国第十二次学术年会暨中华中医药学会心病分会换届选举工作会议论文精选.无锡: 医药卫生科技, 2010: 19-26. |
[19] | 林建著, 许艺惠, 黄守清. 畅脉乐胶囊对血瘀型高血压病患者血管内皮细胞分泌血栓调节蛋白的影响[J]. 福建中医药, 2015, 46(5): 47-49. |
[20] | Forney, L.A., Lenard, N.R., Stewart, L.K. and Henagan, T.M. (2018) Dietary Quercetin Attenuates Adipose Tissue Expansion and Inflammation and Alters Adipocyte Morphology in a Tissue-Specific Manner. International Journal of Molecular Sciences, 19, 895-895. https://doi.org/10.3390/ijms19030895 |
[21] | Li, H.X., Xiao, L., He, H., Zeng, H., Liu, J., Jiang, C., et al. (2021) Quercetin Attenuates Atherosclerotic Inflammation by Inhibiting Gal-3-NLRP3 Signaling Pathway. Molecular Nutrition & Food Research, 65, Article ID: e2000746.
https://doi.org/10.1002/mnfr.202000746 |
[22] | Yang, J.N., Zhou, X., Zeng, X.L., Hu, O., Yi, L. and Mi, M. (2019) Resveratrol Attenuates Oxidative Injury in Human Umbilical Vein Endothelial Cells through Regulating Mitochondrial Fusion via TyrRS-PARP1 Pathway. Nutrition & Metabolism, 16, Article No. 9. https://doi.org/10.1186/s12986-019-0338-7 |
[23] | Ma, C.R., Xia, R.L.,Yang, S., Liu, L., Zhang, J., Feng, K., et al. (2020) Formononetin Attenuates Atherosclerosis via Regulating Interaction between KLF4 and SRA in ApoE?/? Mice. Theranostics, 10, 1090-1160.
https://doi.org/10.7150/thno.38115 |
[24] | 闫姗, 南晓东, 马世杰, 汪晨净. 异鼠李素抗动脉粥样硬化作用的研究进展[J]. 中国现代应用药学, 2020, 37(14): 1771-1777. |
[25] | Zhang, X.X., Qin, Y.T., Ruan, W.B., Wan, X., Lv, C., He, L., et al. (2021) Targeting inflammation-Associated AMPK//Mfn-2/MAPKs Signaling Pathways by Baicalein Exerts Anti-Atherosclerotic Action. Phytotherapy Research, 35, 4442-4455. https://doi.org/10.1002/ptr.7149 |
[26] | 韦磊, 王绚, 陈雄, 湛雯, 韩望. 汉黄芩素缓解高脂饮食喂养ApoE?/?小鼠的动脉粥样硬化和NF-κB介导的动脉炎症反应[J]. 天然产物研究与开发, 2021, 33(5): 750-757. |
[27] | Wen, J.X., Chang, Y.M., Huo, S.S., Li, W., Huang, H., Gao, Y., et al. (2020) Tanshinone IIA Attenuates Atherosclerosis via Inhibiting NLRP3 Inflammasome Activation. Aging, 12, 910-932. https://doi.org/10.18632/aging.202202 |
[28] | Li, J., Dong, J.Z., Ren, Y.L., Zhu, J.J., Cao, J.N., Zhang, J., et al. (2018) Luteolin Decreases Atherosclerosis in LDL Receptor-Deficient Mice via a Mechanism Including Decreasing AMPK-SIRT1 Signaling in Macrophages. Experimental and Therapeutic Medicine, 16, 2593-2599. https://doi.org/10.3892/etm.2018.6499 |
[29] | Che, J.B., Liang, B., Zhang, Y., Wang, Y., Tang, J. and Shi, G. (2017) Kaempferol Alleviates Ox-LDL-Induced Apoptosis by Up-Regulation of Autophagy via Inhibiting PI3K/Akt/mTOR Pathway in Human Endothelial Cells. Cardiovascular Pathology, 31, 57-62. https://doi.org/10.1016/j.carpath.2017.08.001 |
[30] | 许晓婷. 柚皮素在调节巨噬细胞内质网应激ATF6活性以及胆固醇流出中作用的研究[D]: [硕士学位论文]. 贵阳: 贵州医科大学, 2019. |
[31] | 于嘉祥, 张瀚文, 杨宇峰, 张文顺, 冀天威, 曲超, 等. 基于AGEs-RAGE信号通路研究中药复方益糖康改善大鼠骨骼肌胰岛素抵抗的作用机制[J/OL]. 中华中医药学刊: 1-23[2022-03-07].
http://kns.cnki.net/kcms/detail/21.1546.R.20211124.1413.002.html |
[32] | Muniyappa, R. and Srinivas, P.R. (2014) Dicarbonyl Stress and Atherosclerosis: Is It All RAGE? Diabetes, 63, 3587-3589. https://doi.org/10.2337/db14-0953 |
[33] | Shao, M., Yu, M., Zhao, J., Mei, J., Pan, Y., Zhang, J., et al. (2020) miR-21-3p Regulates AGE/RAGE Signalling and Improves Diabetic Atherosclerosis. Cell Biochemistry and Function, 38, 965-975. https://doi.org/10.1002/cbf.3523 |
[34] | 肖丽, 刘萍, 秦冰. miR-34a通过调控Sirt1/FoxO1通路影响血管内皮细胞凋亡[J]. 中国动脉硬化杂志, 2021, 29(3): 193-200. |
[35] | 李丽君, 温子云, 何泽淮, 周凤华, 陈晓玲, 赵海鹰. 虎杖苷经PI3K/AKT/FoxO1信号通路抗ApoE?/?小鼠动脉粥样硬化损伤研究[J].解放军预防医学杂志, 2020, 38(1): 29-32. |
[36] | 朱凯瑞, 李霞. 炎症与动脉粥样硬化关系的研究进展[J]. 医学综述, 2021, 27(24): 4789-4793. |