|
悬臂梁在轴向压力和横向力联合作用下的弯曲变形
|
Abstract:
分别研究了等截面悬臂梁在轴向压力和横向力联合作用下的小变形和大变形弯曲问题,推导出了在小变形情形下的等截面悬臂梁在轴向压力和横向力联合作用下的挠曲线解析函数;建立了大变形情形下的等截面悬臂梁在轴向压力和横向力联合作用下的挠曲线数学模型及其计算这种挠曲线的方法。最后列举了两个计算实例。
The small bending deflection and large bending deflection of a cantilever beam with constant cross section subjected to axial pressure and transverse force are studied, respectively. The analytical function of small deflection curve of the beam is deduced. A mathematical model and a calculation method of large deflection curve of the beam are established. Finally, two calculation examples are given.
[1] | Hibbeler, R.C. (2016) Mechanics of Materials. 10th Edition, Pearson, New Jersey. |
[2] | Gere, J.M. and Goodno, B.J. (2013) Mechanics of Materials. 8th Edition, Cengage Learning, Stamford. |
[3] | Bedford, A. and Liechti, K.M. (2020) Mechanics of Materials. 2nd Edition, Springer Nature Switzerland AG, Switzerland. |
[4] | 张涛然, 晁晓洁, 郭丽红. 材料力学[M]. 重庆: 重庆大学出版社, 2018. |
[5] | 赵国华, 王兆菡, 李永莉. 材料力学[M]. 北京: 化学工业出版社, 2020. |
[6] | 王逸维, 王杰, 沈杰, 等. 基于MATLAB的悬臂梁大变形分析[J]. 力学与实践, 2015, 37(6): 750-753. |
[7] | 刘鸿文, 林建兴, 曹曼玲. 高等材料力学[M]. 北京: 高等教育出版社, 1985. |
[8] | 张志涌. 精通MATLAB R2011a [M]. 北京: 北京航空航天大学出版社, 2011. |