全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Performance Investigation of Biomass Gasification for Syngas and Hydrogen Production Using Aspen Plus

DOI: 10.4236/ojmsi.2022.102005, PP. 71-87

Keywords: Biomass Gasification, Syngas, Hydrogen, Simulation, Parametric Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study presents a reliable model using Aspen Plus process simulator capable of performing a sensitivity analysis of the downdraft gasification linked to hydrogen production unit. Effects of key factors, including gasification temperature and steam to biomass ratio (SBR) on the syngas composition, calorific value of syngas and hydrogen production are discussed and then the optimal conditions for maximum hydrogen production are extracted. The model is validated by experimental and other modeling data and found to be in great agreement. The sensitivity analysis results obtained by only using air as gasification agent indicate that higher temperatures are favorable for a product gas with higher hydrogen content and calorific value. Moreover, steam consumption as gasifying agent leads to increasing the hydrogen content and heating value of the syngas compared to the use of air as gasification agent. Finally, the results show that the optimal conditions to have the highest value of hydrogen output from sawdust downdraft gasification are 800˚C as gasifier temperature and 0.6 for SBR.

References

[1]  Briefing, U.S. (2013) International Energy Outlook 2013. US Energy Information Administration. 506:507.
[2]  Safarianbana, S. (2021) Simulation of a Small Scale Biowaste Gasification System for Energy Production.
[3]  Safarian, S., Unnthorsson, R. and Richter, C. (2021) Bioethanol Production via Herbaceous and Agricultural Biomass Gasification Integrated with Syngas Fermentation. Fermentation, 7, 139.
https://doi.org/10.3390/fermentation7030139
[4]  Safarian, S., Sattari, S. and Hamidzadeh, Z. (2018) Sustainability Assessment of Biodiesel Supply Chain from Various Biomasses and Conversion Technologies. BioPhysical Economics and Resource Quality, 3, Article No. 6.
https://doi.org/10.1007/s41247-018-0039-2
[5]  Safarian, S., Khodaparast, P. and Kateb, M. (2014) Modeling and Technical-Economic Optimization of Electricity Supply Network by Three Photovoltaic Systems. Journal of Solar Energy Engineering, 136, Article ID: 024501.
https://doi.org/10.1115/1.4025120
[6]  Safarian, S., Unnthorsson, R. and Richter, C. (2021) Performance Analysis of Power Generation by Wood and Woody Biomass Gasification in a Downdraft Gasifier. Journal of Applied Power Engineering, 10, 80-88.
https://doi.org/10.11591/ijape.v10.i1.pp80-88
[7]  Safarian, S., Unnthorsson, R. and Richter, C. (2020) Performance Analysis and Environmental Assessment of Small-Scale Waste Biomass Gasification Integrated CHP in Iceland. Energy, 197, Article ID: 117268.
https://doi.org/10.1016/j.energy.2020.117268
[8]  Balat, H. and Kırtay, E. (2010) Hydrogen from Biomass-Present Scenario and Future Prospects. International Journal of Hydrogen Energy, 35, 7416-7426.
https://doi.org/10.1016/j.ijhydene.2010.04.137
[9]  Çağlar, A. and Demirbaş, A. (2002) Hydrogen Rich Gas Mixture from Olive Husk via Pyrolysis. Energy Conversion and Management, 43, 109-117.
https://doi.org/10.1016/S0196-8904(01)00012-7
[10]  Carrara, A., Perdichizzi, A. and Barigozzi, G. (2010) Simulation of an Hydrogen Production Steam Reforming Industrial Plant for Energetic Performance Prediction. International Journal of Hydrogen Energy, 35, 3499-3508.
https://doi.org/10.1016/j.ijhydene.2009.12.156
[11]  Safarian, S., Ebrahimi Saryazdi, S.M., Unnthorsson, R. and Richter, C. (2021) Modeling of Hydrogen Production by Applying Biomass Gasification: Artificial Neural Network Modeling Approach. Fermentation, 7, Article No. 71.
https://doi.org/10.3390/fermentation7020071
[12]  Safarian, S., Unnthorsson, R. and Richter, C. (2021) Hydrogen Production via Biomass Gasification: Simulation and Performance Analysis under Different Gasifying Agents. Biofuels, 1-10.
https://doi.org/10.1080/17597269.2021.1894781
[13]  Gai, C. and Dong, Y. (2012) Experimental Study on Non-Woody Biomass Gasification in a Downdraft Gasifier. International Journal of Hydrogen Energy, 37, 4935-4944.
https://doi.org/10.1016/j.ijhydene.2011.12.031
[14]  Inayat, A., Raza, M., Khan, Z., Ghenai, C., Aslam, M., Shahbaz, M., et al. (2020) Flowsheet Modeling and Simulation of Biomass Steam Gasification for Hydrogen Production. Chemical Engineering & Technology, 43, 649-660.
https://doi.org/10.1002/ceat.201900490
[15]  Safarian, S., Sattari, S., Unnthorsson, R. and Hamidzadeh, Z. (2019) Prioritization of Bioethanol Production Systems from Agricultural and Waste Agricultural Biomass Using Multi-Criteria Decision Making. BioPhysical Economics and Resource Quality, 4, 1-16.
https://doi.org/10.1007/s41247-019-0052-0
[16]  Safarian, S. and Unnthorsson, R. (2018) An Assessment of the Sustainability of Lignocellulosic Bioethanol Production from Wastes in Iceland. Energies, 11, Article No. 1493.
https://doi.org/10.3390/en11061493
[17]  Ferreira, S., Monteiro, E., Brito, P. and Vilarinho, C. (2017) Biomass Resources in Portugal: Current Status and Prospects. Renewable and Sustainable Energy Reviews, 78, 1221-1235.
https://doi.org/10.1016/j.rser.2017.03.140
[18]  Safarian, S., Unnthorsson, R. and Richter, C. (2020) Simulation and Performance Analysis of Integrated Gasification-Syngas Fermentation Plant for Lignocellulosic Ethanol Production. Fermentation, 6, Article No. 68.
https://doi.org/10.3390/fermentation6030068
[19]  Safarian, S., Unnthorsson, R. and Richter, C. (2020) Artificial Neural Network Modeling of Bioethanol Production via Syngas Fermentation. BioPhysical Economics and Sustainability, 6, Article No. 1.
https://doi.org/10.1007/s41247-020-00083-2
[20]  Safarian, S., Unnthorsson, R. and Richter, C. (2020) Techno-Economic and Environmental Assessment of Power Supply Chain by Using Waste Biomass Gasification in Iceland. BioPhysical Economics and Sustainability, 5, Article No. 7.
https://doi.org/10.1007/s41247-020-00073-4
[21]  Safarian, S., Unnthorsson, R. and Richter, C. (2020) Techno-Economic Analysis of Power Production by Using Waste Biomass Gasification. Journal of Power and Energy Engineering, 8, 1-8.
https://doi.org/10.4236/jpee.2020.86001
[22]  Cao, Y., Bai, Y. and Du, J. (2021) Air-Gasification of Pine Sawdust Using Dolomite as In-Bed Material: Effects of Gasification Conditions on Product Characteristics. Journal of the Energy Institute, 95, 187-192.
https://doi.org/10.1016/j.joei.2021.01.010
[23]  Cardoso, J., Silva, V. and Eusébio, D. (2019) Techno-Economic Analysis of a Biomass Gasification Power Plant Dealing with Forestry Residues Blends for Electricity Production in Portugal. Journal of Cleaner Production, 212, 741-753.
https://doi.org/10.1016/j.jclepro.2018.12.054
[24]  Luz, F.C., Rocha, M.H., Lora, E.E.S., Venturini, O.J. andrade, R.V., Leme, M.M.V., et al. (2015) Techno-Economic Analysis of Municipal Solid Waste Gasification for Electricity Generation in Brazil. Energy Conversion and Management, 103, 321-337.
https://doi.org/10.1016/j.enconman.2015.06.074
[25]  Marcantonio, V., De Falco, M., Capocelli, M., Bocci, E., Colantoni, A. and Villarini, M. (2019) Process Analysis of Hydrogen Production from Biomass Gasification in Fluidized Bed Reactor with Different Separation Systems. International Journal of Hydrogen Energy, 44, 10350-10360.
https://doi.org/10.1016/j.ijhydene.2019.02.121
[26]  Safarian, S., Unnthorsson, R. and Richter, C. (2020) The Equivalence of Stoichiometric and Non-Stoichiometric Methods for Modeling Gasification and Other Reaction Equilibria. Renewable and Sustainable Energy Reviews, 131, Article ID: 109982.
https://doi.org/10.1016/j.rser.2020.109982
[27]  Safarian, S., Ebrahimi Saryazdi, S.M., Unnthorsson, R. and Richter, C. (2020) Artificial Neural Network Integrated with Thermodynamic Equilibrium Modeling of Downdraft Biomass Gasification-Power Production Plant. Energy, 2020, Article ID: 118800.
https://doi.org/10.1016/j.energy.2020.118800
[28]  Han, J., Liang, Y., Hu, J., Qin, L., Street, J., Lu, Y., et al. (2017) Modeling Downdraft Biomass Gasification Process by Restricting Chemical Reaction Equilibrium with Aspen plus. Energy Conversion and Management, 153, 641-648.
https://doi.org/10.1016/j.enconman.2017.10.030
[29]  Hantoko, D., Yan, M., Prabowo, B., Susanto, H., Li, X. and Chen, C. (2019) Aspen plus Modeling Approach in Solid Waste Gasification. In: Current Developments in Biotechnology and Bioengineering, Elsevier, Amsterdam, 259-281.
https://doi.org/10.1016/B978-0-444-64083-3.00013-0
[30]  Haratian, M., Amidpour, M. and Hamidi, A. (2019) Modeling and Optimization of Process Fired Heaters. Applied Thermal Engineering, 157, Article ID: 113722.
https://doi.org/10.1016/j.applthermaleng.2019.113722
[31]  Gómez-Barea, A. and Leckner, B. (2010) Modeling of Biomass Gasification in Fluidized Bed. Progress in Energy and Combustion Science, 36, 444-509.
https://doi.org/10.1016/j.pecs.2009.12.002
[32]  Couto, N., Rouboa, A., Silva, V., Monteiro, E. and Bouziane, K. (2013) Influence of the Biomass Gasification Processes on the Final Composition of Syngas. Energy Procedia, 36, 596-606.
https://doi.org/10.1016/j.egypro.2013.07.068
[33]  Nemtsov, D. and Zabaniotou, A. (2008) Mathematical Modelling and Simulation Approaches of Agricultural Residues Air Gasification in a Bubbling Fluidized Bed Reactor. Chemical Engineering Journal, 143, 10-31.
https://doi.org/10.1016/j.cej.2008.01.023
[34]  Safarian, S., Unnþórsson, R. and Richter, C. (2019) A Review of Biomass Gasification Modelling. Renewable and Sustainable Energy Reviews, 110, 378-391.
https://doi.org/10.1016/j.rser.2019.05.003
[35]  Couto, N., Silva, V., Monteiro, E., Brito, P. and Rouboa, A. (2015) Modeling of Fluidized Bed Gasification: Assessment of Zero-Dimensional and CFD Approaches. Journal of Thermal Science, 24, 378-385.
https://doi.org/10.1007/s11630-015-0798-7
[36]  Puig-Arnavat, M., Bruno, J.C. and Coronas, A. (2010) Review and Analysis of Biomass Gasification Models. Renewable and Sustainable Energy Reviews, 14, 2841-2851.
https://doi.org/10.1016/j.rser.2010.07.030
[37]  Puig-Arnavat, M., Hernández, J.A., Bruno, J.C. and Coronas, A. (2013) Artificial Neural Network Models for Biomass Gasification in Fluidized Bed Gasifiers. Biomass and Bioenergy, 49, 279-289.
https://doi.org/10.1016/j.biombioe.2012.12.012
[38]  Mansaray, K., Al-Taweel, A., Ghaly, A., Hamdullahpur, F. and Ugursal, V. (2000) Mathematical Modeling of a Fluidized Bed Rice Husk Gasifier: Part I—Model Development. Energy Sources, 22, 83-98.
https://doi.org/10.1080/00908310050014243
[39]  Mathieu, P. and Dubuisson, R. (2002) Performance Analysis of a Biomass Gasifier. Energy Conversion and Management, 43, 1291-1299.
https://doi.org/10.1016/S0196-8904(02)00015-8
[40]  Nikoo, M.B. and Mahinpey, N. (2008) Simulation of Biomass Gasification in Fluidized Bed Reactor Using ASPEN Plus. Biomass and Bioenergy, 32, 1245-1254.
https://doi.org/10.1016/j.biombioe.2008.02.020
[41]  Kaushal, P. and Tyagi, R. (2017) Advanced Simulation of Biomass Gasification in a Fluidized Bed Reactor Using ASPEN Plus. Renewable Energy, 101, 629-636.
https://doi.org/10.1016/j.renene.2016.09.011
[42]  Favas, J., Monteiro, E. and Rouboa, A. (2017) Hydrogen Production Using Plasma Gasification with Steam Injection. International Journal of Hydrogen Energy, 42, 10997-11005.
https://doi.org/10.1016/j.ijhydene.2017.03.109
[43]  Doherty, W., Reynolds, A. and Kennedy, D. (2013) Aspen Plus Simulation of Biomass Gasification in a Steam Blown Dual Fluidised Bed. In: Méndez-Vilas, A., Ed., Materials and Processes for Energy: Communicating Current Research and Technological Developments, Formatex Research Centre, Dublin Institute of Technology, 212-220.
[44]  Begum, S., Rasul, M.G., Akbar, D. and Ramzan, N. (2013) Performance Analysis of an Integrated Fixed Bed Gasifier Model for Different Biomass Feedstocks. Energies, 6, 6508-6524.
https://doi.org/10.3390/en6126508
[45]  Sreejith, C., Muraleedharan, C. and Arun, P. (2013) Performance Prediction of Fluidised Bed Gasification of Biomass Using Experimental Data-Based Simulation Models. Biomass Conversion and Biorefinery, 3, 283-304.
https://doi.org/10.1007/s13399-013-0083-5
[46]  Safarian, S., Richter, C. and Unnthorsson, R. (2019) Waste Biomass Gasification Simulation Using Aspen Plus: Performance Evaluation of Wood Chips, Sawdust and Mixed Paper Wastes. Journal of Power and Energy Engineering, 7, 12-30.
https://doi.org/10.4236/jpee.2019.76002
[47]  Safarianbana, S., Unnthorsson, R. and Richter, C. (2019) Development of a New Stoichiometric Equilibrium-Based Model for Wood Chips and Mixed Paper Wastes Gasification by ASPEN Plus. ASME International Mechanical Engineering Congress and Exposition, Vol. 59438, American Society of Mechanical Engineers.
[48]  Lan, W., Chen, G., Zhu, X., Wang, X., Liu, C. and Xu, B. (2018) Biomass Gasification-Gas Turbine Combustion for Power Generation System Model Based on ASPEN PLUS. Science of the Total Environment, 628, 1278-1286.
https://doi.org/10.1016/j.scitotenv.2018.02.159
[49]  Safarian, S., Unnthorsson, R. and Richter, C. (2020) Simulation of Small-Scale Waste Biomass Gasification Integrated Power Production: A Comparative Performance Analysis for Timber and Wood Waste. International Journal of Applied Power Engineering (IJAPE), 9, 147-152.
https://doi.org/10.11591/ijape.v9.i2.pp147-152
[50]  Tauqir, W., Zubair, M. and Nazir, H. (2019) Parametric Analysis of a Steady State Equilibrium-Based Biomass Gasification Model for Syngas and Biochar Production and Heat Generation. Energy Conversion and Management, 199, Article ID: 111954.
https://doi.org/10.1016/j.enconman.2019.111954
[51]  Dhanavath, K.N., Shah, K., Bhargava, S.K., Bankupalli, S. and Parthasarathy, R. (2018) Oxygen-Steam Gasification of Karanja Press Seed Cake: Fixed Bed Experiments, ASPEN Plus Process Model Development and Benchmarking with Saw Dust, Rice Husk and Sunflower Husk. Journal of Environmental Chemical Engineering, 6, 3061-3069.
https://doi.org/10.1016/j.jece.2018.04.046
[52]  Gagliano, A., Nocera, F., Bruno, M. and Cardillo, G. (2017) Development of an Equilibrium-Based Model of Gasification of Biomass by Aspen Plus. Energy Procedia, 111, 1010-1019.
https://doi.org/10.1016/j.egypro.2017.03.264
[53]  Safarian, S., Ebrahimi Saryazdi, S.M., Unnthorsson, R. and Richter, C. (2021) Gasification of Woody Biomasses and Forestry Residues: Simulation, Performance Analysis, and Environmental Impact. Fermentation, 7, Article No. 61.
https://doi.org/10.3390/fermentation7020061
[54]  Ramzan, N., Ashraf, A., Naveed, S. and Malik, A. (2011) Simulation of Hybrid Biomass Gasification Using Aspen Plus: A Comparative Performance Analysis for Food, Municipal Solid and Poultry Waste. Biomass and Bioenergy, 35, 3962-3969.
https://doi.org/10.1016/j.biombioe.2011.06.005
[55]  Tavares, R., Monteiro, E., Tabet, F. and Rouboa, A. (2020) Numerical Investigation of Optimum Operating Conditions for Syngas and Hydrogen Production from Biomass Gasification Using Aspen Plus. Renewable Energy, 146, 1309-1314.
https://doi.org/10.1016/j.renene.2019.07.051
[56]  Keche, A.J., Gaddale, A.P.R. and Tated, R.G. (2015) Simulation of Biomass Gasification in Downdraft Gasifier for Different Biomass Fuels Using ASPEN PLUS. Clean Technologies and Environmental Policy, 17, 465-473.
https://doi.org/10.1007/s10098-014-0804-x
[57]  Gordillo, G., Annamalai, K. and Carlin, N. (2009) Adiabatic Fixed-Bed Gasification of Coal, Dairy Biomass, and Feedlot Biomass Using an Air-Steam Mixture as an Oxidizing Agent. Renewable Energy, 34, 2789-2797.
https://doi.org/10.1016/j.renene.2009.06.004
[58]  Preciado, J.E., Ortiz-Martinez, J.J., Gonzalez-Rivera, J.C., Sierra-Ramirez, R. and Gordillo, G. (2012) Simulation of Synthesis Gas Production from Steam Oxygen Gasification of Colombian Coal Using Aspen Plus®. Energies, 5, 4924-4940.
https://doi.org/10.3390/en5124924
[59]  Sjardin, M., Damen, K. and Faaij, A. (2006) Techno-Economic Prospects of Small-Scale Membrane Reactors in a Future Hydrogen-Fuelled Transportation Sector. Energy, 31, 2523-2555.
https://doi.org/10.1016/j.energy.2005.12.004
[60]  Li, A., Liang, W. and Hughes, R. (2000) The Effect of Carbon Monoxide and Steam on the Hydrogen Permeability of a Pd/Stainless Steel Membrane. Journal of Membrane Science, 165, 135-141.
https://doi.org/10.1016/S0376-7388(99)00223-9
[61]  Sircar, S., Waldron, W.E., Anand, M. and Rao, M.B. (1998) Hydrogen Recovery by Pressure Swing Adsorption Integrated with Adsorbent Membranes. Google Patents.
[62]  Pallozzi, V., Di Carlo, A., Bocci, E., Villarini, M., Foscolo, P. and Carlini, M. (2016) Performance Evaluation at Different Process Parameters of an Innovative Prototype of Biomass Gasification System Aimed to Hydrogen Production. Energy Conversion and Management, 130, 34-43.
https://doi.org/10.1016/j.enconman.2016.10.039
[63]  Honeywell, U. (2016) Years of PSA Technology for H2 Purification.
[64]  Jayah, T., Aye, L., Fuller, R.J. and Stewart, D. (2003) Computer Simulation of a Downdraft Wood Gasifier for Tea Drying. Biomass and Bioenergy, 25, 459-469.
https://doi.org/10.1016/S0961-9534(03)00037-0
[65]  Couto, N., Silva, V., Monteiro, E., Teixeira, S., Chacartegui, R., Bouziane, K., et al. (2015) Numerical and Experimental Analysis of Municipal Solid Wastes Gasification Process. Applied Thermal Engineering, 78, 185-195.
https://doi.org/10.1016/j.applthermaleng.2014.12.036
[66]  Kuo, P.-C., Wu, W. and Chen, W.-H. (2014) Gasification Performances of Raw and Torrefied Biomass in a Downdraft Fixed Bed Gasifier Using Thermodynamic Analysis. Fuel, 117, 1231-1241.
https://doi.org/10.1016/j.fuel.2013.07.125
[67]  Lv, P., Xiong, Z., Chang, J., Wu, C., Chen, Y. and Zhu, J. (2004) An Experimental Study on Biomass Air-Steam Gasification in a Fluidized Bed. Bioresource Technology, 95, 95-101.
https://doi.org/10.1016/j.biortech.2004.02.003

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133