The present work deals with reducing greenhouse gas emissions through improving the life span of wooden power electric
poles of Eucalyptus saligna. Indeed, in Sub-Saharan African countries, Cameroon
in particular, most of the power line networks are made of wooden supports and
according to the Cameroon energy distribution company, wooden poles represent
32% of the causes of death linked to the state of the network. The company’s 2019
annual report indicates that 40,000 wooden
poles were in critical condition andshould
be replaced. A significant number of mechanical failures affecting these
supports have been observed. For example, on
the HVA/LV power line “D17 Nko- abang” in
Yaoundé in Cameroon, less than three years old, 10 (ten) cases of poles falling
and/or breaking, due to their mechanical loading, were observed over a period
of fewer than nine months, causing an average service stoppage for more than 11
hours and affecting an average of 3280 customers. These incidents lead to
questionsabout how the supports are dimensioned and what load capacities they are designed
to support. The aim of this work is, therefore, to
References
[1]
ENEO (2019) ENEO 2019 Annual Report. ENEO, Cameroon.
http://eneocameroon.cm/pdf/Rapport_Annuel_Eneo2019.pdf
[2]
Dadji, T.R. (2020) Sizing of Power Lines’ Supports: Case of the Line D17 Nkoabang of ENEO Network. Dissertation, Yaoundé I National Advanced School of Engineering, Yaoundé, 107 p.
[3]
Gaezl, J. (1954) Annual Report of the Geological Survey. Directorate of Mines and Geology, Ministry of Mines and Energy, Yaounde, 135 p.
[4]
AES-Sonel (2007) Construction Standard for HTA and LV Overhead Lines on Wooden Poles in Rigid Technology. Networks Direction, AES-Sonel, Cameroon, 144 p.
[5]
Chanal, A. and Levêque J.-P. (2008) Overhead Lines: Equipment—Guard Conductors and Cables. Engineering Techniques, Edition Techniques d’Ingenieur, Marseille, 10 p.
[6]
Chakira Cable Tunisia (2020) Domestic Low Voltage Cables, Industrial in Distribution. http://www.chakira-cables.com/fr/catalogue.php?id_cable=44&cat=5
[7]
Gérard, J., Kouassi, A.E., Daigremont, C., Détienne, P., Fouquet, D. and Vernay, M. (1998) Synthèse sur les caractéristiques technologiques de référence des principaux bois commerciaux africains. The French Agricultural Research Centre for International Development, Paris, 189 p.
[8]
Gerhards, C.C. (1965) Physical and Mechanical Properties of Saligna Eucalyptus, U.S. Department of Agriculture, Washington DC, 16 p.
[9]
French Agricultural Research Centre for International Development (CIRAD) (1965) Essais de poteaux d’Eucalyptus provenant du Cameroun.
http://agritrop.cirad.fr/363961/
[10]
AES-Sonel (2009) Spécification techniques pour l’élaboration des poteaux bois. DRES/SDD/DNGT, 28 p.
[11]
Réseau de Transport d’Electricité (2000) Cahier de charges général—Lignes aériennes HTB—Ouvrages neufs, 164 p
[12]
Houet, O. (1998) Sizing of a Three-Phased Junction. Engineer Dissertation, University of Liège, Belgium, 142 p.
[13]
Ditrinou, E. (2003) Modélisation du comportement mécanique des supports de lignes électriques en béton de sable armé et précontraint pour le Réseau d’Electrification Rurale du Sénégal. Universite Cheikh Anta Diop, Thiès, 105 p.
[14]
Hatibovic, A. (2014) Derivation of Equations for Conductor and Sag Curves of an Overhead Line Based on a Given Catenary Constant. Electrical Engineering and Computer Science, 58, 23-27. https://doi.org/10.3311/PPee.6993
[15]
Douglass, D.A. and Thrash, F.R. (2007) Sag and Tension of Conductor. In: Grigsby, L.L., Ed., Electric Power Generation, Transmission, and Distribution: The Electric Power Engineering Handbook, 2nd Edition, CRC Press, Boca Raton, 176 p.
[16]
Hatibovic, A. (2012) Integral Calculus Usage for Conductor Length Determination on the Basis of Known Maximal Sag of a Parabola. Periodica Polytechnica Electrical Engineering and Computer Science, 56, 35-41. https://doi.org/10.3311/PPee.7076
[17]
Anusandhan, S. and Abebe, Y.M. (2015) Overhead Transmission Line Sag, Tension and Length Calculation using Affine Arithmetic. 2015 IEEE Power, Communication and Information Technology Conference (PCITC), Bhubaneswar, 15-17 October 2015, 211-216. https://doi.org/10.1109/PCITC.2015.7438162
[18]
Hlalele, T.S. and Du, S. (2013) Real Time Monitoring of High Voltage Transmission Line Conductor Sag: The State-of-the-Art. International Journal of Engineering and Advanced Technology, 3, 297-302.
[19]
Chanal, A. (2008) Lignes aériennes, Dimensionnent, Technique de l’Ingénieur, D4421, 2008.
[20]
Ministry of Water and Energy Resources (2006) Arrêté interministériel fixant la garde au sol des poteaux pour le réseau de distribution d’énergie électrique en vigueur au Cameroon. Ministry of Water and Energy Resources.
[21]
Itterbeek, R. (2017) Chapter 8. Resistance of Material—Buckling. In: Cahier des Charges General Lignes Aériennes HTB—Ouvrages Neufs (CCG—LA Ouvrages Neufs), RTE, Paris, 80-98.
[22]
Réseau de Transport d’Electricité (2000) Cahier de charges général—Lignes aériennes HTB—Ouvrages neufs, 164 p.
[23]
Makhlouf, O. and Mansour, N. (2019) Etude de flambement des structures métalliques. Mémoire de master, Université Mouloud Mammeri de Tizi-Ouzon, Tizi Ouzou, 70 p.
[24]
Benaissa, A. and Khadraoui, M. (2017) Flambement des barres comprimées et compri-mées fléchies-effet de déformation initial et l’excentricité du chargement. Mémoire de master, Université de Tlemcen, Algérie, 87 p.