|
以高嘌呤饮食评估罗伊氏乳杆菌Lactobacillus reuteri GKR1之降尿酸效果
|
Abstract:
[1] | Gersch, C., Palii, S.P., Kim, K.M., Angerhofer, A., Johnson, R.J. and Henderson, G.N. (2008) Inactivation of Nitric Oxide by Uric Acid. Nucleosides, Nucleotides & Nucleic Acids, 27, 967-978.
https://doi.org/10.1080/15257770802257952 |
[2] | Zhou, Y., Fang, L., Jiang, L., Wen, P., Cao, H., He, W., Dai, C. and Yang, J. (2012) Uric Acid Induces Renal Inflammation via Activating Tubular NF-κB Signaling Pathway. PLoS One, 7, e39738.
https://doi.org/10.1371/journal.pone.0039738 |
[3] | Pacher, P., Nivorozhkin, A. and Szabó, C. (2006) Therapeutic Effects of Xanthine Oxidase Inhibitors: Renaissance Half a Century after the Discovery of Allopurinol. Pharmacological Reviews, 58, 87-114.
https://doi.org/10.1124/pr.58.1.6 |
[4] | Heel, R.C., Brogden, R.N., Speight, T.M., et al. (1977) Benzbromarone: A Review of Its Pharmacological Properties and Therapeutic Use in Gout and Hyperuricaemia. Drugs, 14, 349-366.
https://doi.org/10.2165/00003495-197714050-00002 |
[5] | Singh, G., Lingala, B. and Mithal, A. (2019) Gout and Hyperuricaemia in the USA: Prevalence and Trends. Rheumatology (Oxford, England), 58, 2177-2180. https://doi.org/10.1093/rheumatology/kez196 |
[6] | Liu, H., Zhang, X.M., Wang, Y.L. and Liu, B.C. (2014) Preva-lence of Hyperuricemia among Chinese Adults: A National Cross-Sectional Survey Using Multistage, Stratified Sam-pling. Journal of Nephrology, 27, 653-658.
https://doi.org/10.1007/s40620-014-0082-z |
[7] | Kan, Y., Zhang, Z., Yang, K., Ti, M., Ke, Y., Wu, L., Yang, J. and He, Y. (2019) Influence of d-Amino Acids in Beer on Formation of Uric Acid. Food Technology and Biotechnology, 57, 418-425.
https://doi.org/10.17113/ftb.57.03.19.6022 |
[8] | Choi, H.K., Liu, S. and Curhan, G. (2005) Intake of Purine-Rich Foods, Protein, and Dairy Products and Relationship to Serum Levels of Uric Acid: The Third National Health and Nu-trition Examination Survey. Arthritis and Rheumatism, 52, 283-289. https://doi.org/10.1002/art.20761 |
[9] | Yamada, N., Saito, C., Kano, H., Fukuuchi, T., Yamaoka, N., Kaneko, K. and Asami, Y. (2020) Lactobacillus Gasseri PA-3 Di-rectly Incorporates Purine Mononucleotides and Utilizes Them for Growth. Nucleosides, Nucleotides & Nucleic Acids, 1-10. https://doi.org/10.1080/15257770.2020.1815768 |
[10] | Kuo, Y.W., Hsieh, S.H., Chen, J.F., Liu, C.R., Chen, C.W., Huang, Y.F. and Ho, H.H. (2021) Lactobacillus reuteri TSR332 and Lactobacillus Fermentum TSF331 Stabilize Serum Uric Acid Levels and Prevent Hyperuricemia in Rats. PeerJ, 9, e11209. https://doi.org/10.7717/peerj.11209 |
[11] | Wang, H., Mei, L., Deng, Y., Liu, Y., Wei, X., Liu, M., Zhou, J., Ma, H., Zheng, P., Yuan, J., et al. (2019) Lactobacillus Brevis DM9218 Ameliorates Fructose-Induced Hyperuricemia through Inosine Degradation and Manipulation of Intestinal Dysbiosis. Nutrition, 62, 63-73. https://doi.org/10.1016/j.nut.2018.11.018 |
[12] | Guo, Y., Li, H., Liu, Z., Li, C., Chen, Y., Jiang, C., Yu, Y. and Tian, Z. (2019) Impaired Intestinal Barrier Function in a Mouse Model of Hyperuricemia. Molecular Medicine Reports, 20, 3292-3300.
https://doi.org/10.3892/mmr.2019.10586 |
[13] | Wang, R., Ma, C.H., Zhou, F. and Kong, L.D. (2016) Siwu Decoc-tion Attenuates Oxonate-Induced Hyperuricemia and Kidney Inflammation in Mice. Chinese Journal of Natural Medi-cines, 14, 499-507.
https://doi.org/10.1016/S1875-5364(16)30059-0 |
[14] | Serfilippi, L.M., Pallman, D.R. and Russell, B. (2003) Serum Clinical Chemistry and Hematology Reference Values in Outbred Stocks of Albino Mice from Three Commonly Used Vendors and Two Inbred Strains of Albino Mice. Contemporary Topics in Laboratory Animal Science, 42, 46-52. |
[15] | Dolati, K., Rakhshandeh, H., Golestani, M., Forouzanfar, F., Sadeghnia, R. and Sadeghnia, H.R. (2018) In-hibitory Effects of Apiumgraveolens on Xanthine Oxidase Activity and Serum Uric Acid Levels in Hyperuricemic Mice. Preventive Nutrition and Food Science, 23, 127-133. https://doi.org/10.3746/pnf.2018.23.2.127 |