全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于美颜相机APP用户画像精准营销策略研究
Research on Precision Marketing Strategy of User Portrait Based on Beauty Camera App

DOI: 10.12677/SA.2022.111013, PP. 111-119

Keywords: 用户画像,LDA,SVM,精准
User Portrait
, LDA, SVM, Precision Marketing

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着大数据时代的到来,互联网技术飞速发展。为在竞品当中脱颖而出,获得竞争优势,过度竞争趋势在互联网企业中逐渐显现,由此引发公司营销成本的上升以及营销绩效的下降等许多问题。针对上述问题,本文依靠美颜相机用户数据,利用LDA模型建立用户画像,通过提取主题词得到相应的主题分布;将选取的对应词扩充到特征空间中,完善用户特征,再利用SVM分类算法区分用户基本属性,进而构建用户画像。根据建立用户画像结果,给出精准营销策略建议。
With the advent of the era of big data, Internet technology has developed rapidly. In order to stand out among competing products and gain competitive advantage, the trend of excessive competition gradually appears in Internet enterprises, which leads to many problems, such as the rise of marketing costs and the decline of marketing performance. To solve the above problems, this paper relies on the user data of beauty camera, uses LDA model to establish user portrait, and obtains the corresponding subject distribution by extracting subject words; Expand the selected corresponding words into the feature space, improve the user features, and then use the SVM classification algorithm to distinguish the basic attributes of users, so as to construct the user portrait. According to the results of establishing user portrait, give suggestions on precision marketing strategy.

References

[1]  陈志明, 胡震云. UGC网站用户画像研究[J]. 计算机系统应用, 2017, 26(1): 24-30.
[2]  王乐, 倪维健, 林泽东, 等. 基于模型堆叠的上网行为日志用户画像方法[J]. 山东科技大学学报(自然科学版), 2018, 37(5): 70-78.
[3]  李军政, 黄海, 黄瑞阳, 等. 基于卡方检验和SVM的用户搜索画像技术研究[J]. 电子设计工程, 2017, 25(24): 6-10.
[4]  费鹏. 用户画像构建技术研究[D]: [硕士学位论文]. 大连: 大连理工大学, 2017.
[5]  张虹. 短文本分类技术研究[D]: [硕士学位论文]. 大连: 辽宁师范大学, 2015.
[6]  Tan, C. (2013) Short Text Classification Based on LDA and SVM. International Journal of Applied Mathematics and Statistics, 51, 205-214.
[7]  杨萌萌, 黄浩, 程露红, 等. 基于LDA主题模型的短文本分类[J]. 计算机工程与设计, 2016, 37(12): 3371-3377.
[8]  施瑞朗. 基于社交平台数据的文本分类算法研究[J]. 电子科技, 2018, 31(10): 69-70+75.
[9]  周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.
[10]  Sidorov, G. and Gelbukh, A. (2014) Soft Similarity and Soft Cosine Measure: Similarity of Features in Vector Space Model. Computer Sistemas, 18, 491-504.
https://doi.org/10.13053/cys-18-3-2043
[11]  Mikolov, T., Sutskeve, R.I., Chen, K., et al. (2013) Distributed Representations of Words and Phrases and Their Compositionality. Proceedings of Advances in Neural Information Processing Systems, [cs. CL] 16 October 2013, 3111- 3119.
[12]  Qiu, Z. and Wu, B. (2014) Collapsed Gibbs Sampling for Latent Dirichlet Allocation on Spark. Journal of Machine Learning Research, 16, 17-28.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133