|
柴达木中生代盆地成因机制动力学
|
Abstract:
柴达木盆地是一个中、新生代的叠合盆地,新生代盆地的成因机制研究比较成熟,而中生代的成因机制尚存在一些争议,本文通过二维有限元方法计算模拟柴达木盆地中生代的应力体系和成因机制。模拟结果表明:盆地的构造演化与周缘大地构造背景密切相关,结合野外构造观测和古地理演化,认为柴达木盆地中生代断陷盆地演化经历两阶段:J1-J2时期为受近NWW方向拉应力作用的断陷盆地,J3-K1时期是受到近S-N向拉应力的断陷盆地,柴达木盆地沉降中心从柴北缘转移到柴东地区,最大主应力集中分布地区也从柴北缘转移到柴东。
The Qaidam Basin is a Mesozoic-Cenozoic superimposed basin. The research on the dynamic me-chanism of the Cenozoic Qaidam basin is relatively mature, while there are still some disputes on the Mesozoic Qaidam basin. In this paper, the stress field and dynamics are obtained by establishing two stages of 2-dimensional finite element models. We can conclude that the tectonic evolution of the Mesozoic Qaidam Basin is closely related to the tectonic setting of the surrounding areas. Based on the field structural evidence and palaeogeographic evolution, it is considered that the formation and evolution of Qaidam Basin in Mesozoic experienced two stages: During J1-J2 period, there was a faulted basin subjected to tensile stress in near NWW direction, while during J3-K1 period there was a faulted basin subjected to tensile stress in near N-S direction, the subsidence center of Qaidam Basin shifted from northern Qaidam Basin to eastern Qaidam Basin, and the concentrated distribution area of maximum principal stress also shifted from northern Qaidam Basin to eastern Qaidam Basin.
[1] | 夏文臣, 张宁, 袁晓萍, 孟科, 张兵山, 彭晓群. 柴达木侏罗系的构造层序及前陆盆地演化[J]. 石油与天然气地质, 1998, 19(3): 173-181. |
[2] | Ritts, B.D. and Biffi, U. (2001) Mesozoic Northeast Qaidam Basin: Response to Contractional Reactivation of the Qilian Shan, and Implications for the Extent of Mesozoic Intracontinental Deformation in Central Asia. Memoirs-Geological Society of America, 194, 293-316. https://doi.org/10.1130/0-8137-1194-0.293 |
[3] | 和钟铧, 刘招君, 郭巍, 董清水. 柴达木北缘中生代盆地的成因类型及构造沉积演化[J]. 吉林大学学报(地球科学版), 2002, 5(4): 333-339. |
[4] | 靳久强, 赵文智, 薛良清, 孟庆任. 中国西北地区侏罗纪原型盆地与演化特征[J]. 地质论评, 1999, 45(1): 92-104. |
[5] | 曾联波, 金之钧, 张明利, 汤良杰, 由福报, 雷兵足. 柴达木侏罗纪盆地性质及其演化特征[J]. 沉积学报, 2002, 20(2): 288-292. |
[6] | 冯乔, 付锁堂, 张小莉, 陈琰, 汪立群, 周飞, 等. 柴达木盆地及邻区侏罗纪原型盆地恢复及油气勘探前景[J]. 地学前缘, 2019, 26(1): 44-58. |
[7] | 陈志勇, 肖安成, 周苏平, 何光玉. 柴达木盆地侏罗系分布的主控因素研究[J]. 地学前缘, 2005, 12(3): 149-155. |
[8] | 楼谦谦, 肖安成, 杨浩, 黄宏升, 丁卫星, 沈中延, 等. 柴达木盆地北缘中生代盆地性质研究——对大柴旦凹陷的解剖[J]. 高校地质学报, 2009, 15(3): 407-416. |
[9] | 汤良杰, 张一伟, 金之钧, 贾承造. 塔里木盆地、柴达木盆地的开合旋回[J]. 地质通报, 2004, 23(3): 254-260. |
[10] | 商琳, 戴俊生, 杨学君, 夏瑞杰. 柴北缘东段构造应力场数值模拟及构造演化模式探讨[J]. 高校地质学报, 2014, 20(2): 260-267. |
[11] | 任收麦, 葛肖虹, 刘永江, 乔德武, 尹成明, Neubauer, F., 等. 柴达木盆地北缘晚中生代–新生代构造应力场——来自构造节理分析的证据[J]. 地质通报, 2009, 28(7): 877-887. |
[12] | 王冰, 刘成林, 李宗星, 郑策. 柴达木盆地东部中生代以来构造应力场及构造演化[J]. 地球科学与环境学报, 2017, 39(1): 83-94. |
[13] | 杨惠心, 禹惠民, 李鹏武. 柴达木地块古地磁研究及其演化[J]. 长春地质学院学报, 1992(4): 420-426. |
[14] | 吴汉宁, 刘池阳, 张小会, 任战利. 用古地磁资料探讨柴达木地块构造演化[J]. 中国科学(D辑: 地球科学), 1997(1): 9-14. |
[15] | 余辉龙, 邓宏文, 胡勇. 从古地磁资料看柴达木盆地古构造环境[J]. 石油勘探与开发, 2002, 29(6): 41-44. |
[16] | 黄宝春, 周烑秀, 朱日祥. 从古地磁研究看中国大陆形成与演化过程[J]. 地学前缘, 2008, 15(3): 348-359. |
[17] | Huang, B., Yan, Y., Piper, J.D.A., et al. (2019) Paleomagnetic Constraints on the Paleogeography of the East Asian Blocks during Late Paleozoic and Early Mesozoic Times. Earth-Science Reviews, 186, 8-36.
https://doi.org/10.1016/j.earscirev.2018.02.004 |
[18] | 陈忠, 魏文彬, 曹璐, 金雅琪, 苗甜. 中生代之前柴达木的演化研究[J]. 盐湖研究, 27(1): 19-27. |
[19] | 罗群. 柴达木盆地成因类型探讨[J]. 石油实验地质, 2008, 30(2): 115-120. |
[20] | 王仁, 丁中一, 殷有泉. 固体力学基础[M]. 北京: 地质出版社, 1979. |
[21] | 王仁. 有限单元等数值方法在我国地球科学中的应用和发展[J]. 地球物理学报, 1994(S1): 128-139. |
[22] | 谭晓慧, 宋传中, 查甫生, 李加好, 张妍. 数值模拟方法在构造变形研究中的应用[J]. 合肥工业大学学报(自然科学版), 2010, 33(12): 1851-1857. |
[23] | Hou, G., Wang, C., Li, J., et al. (2006) Late Paleoproterozoic Extension and a Paleostress Field Reconstruction of the North China Craton. Tectonophysics, 422, 89-98. https://doi.org/10.1016/j.tecto.2006.05.008 |
[24] | Li, J. and Hou, G. (2018) Cretaceous Stress Field Evolution and Origin of the Jiaolai Basin, Eastern North China. Journal of Asian Earth Sciences, 160, 258-270. https://doi.org/10.1016/j.jseaes.2018.01.024 |
[25] | Hou, G., Wang, Y. and Hari, K.R. (2009) The Late Triassic and Late Jurassic Stress Fields and Tectonic Transmission of North China Craton. Journal of Geodynamics, 50, 318-324. https://doi.org/10.1016/j.jog.2009.11.007 |
[26] | Pollard, D.D. (1987) Elementary Fractures Mechanics Applied to the Structural Interpretation of Dykes. In: Halls, H.C. and Fahrig, W.H. (Eds.), Mafic Dyke Swarms, Geological Association of Canada, St. John’s, Special Paper No, 34, 5-24. |
[27] | Giacomo, C., Marco, B., Sandro, C., et al. (2003) Analogue Modelling of Continental Extension: A Review Focused on the Relations between the Patterns of Deformation and the Presence of Magma. Earth-Science Reviews, 63, 169-247.
https://doi.org/10.1016/S0012-8252(03)00035-7 |
[28] | Ju, W., Hou, G. and Zhang, B. (2014) Insights into the Damage Zones in Fault-Bend Folds from Geo-Mechanical Models and Field Data. Tectonophysics, 610, 182-194. https://doi.org/10.1016/j.tecto.2013.11.022 |
[29] | Beer, F.P., Johnston, E.R., Dewolf, J.T. and Mazurek, D.F. (2012) Mechanics of Materials. Sixth Edition, McGraw-Hill Companies, New York, 758 p. |
[30] | 吕宝凤, 张越青, 杨书逸. 柴达木盆地构造体系特征及其成盆动力学意义[J].地质论评, 2011, 57(2): 167-174. |
[31] | 孙松领, 张正刚, 荣光来, 石亚军, 侯栗丽, 王文卓. 阿尔金断裂带中段中生代盆地形成及演化[J]. 新疆石油地质, 2019, 40(5): 528-535. |