|
基于注意力机制的用户动态兴趣推荐算法
|
Abstract:
[1] | Rendle, S., Freudenthaler, C. and Schmidt-Thieme, L. (2010) Factorizing Personalized Markov Chains for Next-Basket Recommendation. Proceedings of the 19th International Conference on World Wide Web, Raleigh, 26-30 April 2010, 811-820. https://doi.org/10.1145/1772690.1772773 |
[2] | He, R. and McAuley, J. (2016) Fusing Similarity Models with Markov Chains for Sparse Sequential Recommendation. 2016 IEEE 16th International Conference on Data Mining (ICDM), Barcelona, 12-15 December 2016, 191-200.
https://doi.org/10.1109/ICDM.2016.0030 |
[3] | Xu, C., Zhao, P., Liu, Y., Xu, J., Sheng, S., Cui, Z., et al. (2019) Recurrent Convolutional Neural Network for Sequential Recommendation. The World Wide Web Conference, San Fran-cisco, 13-17 May 2019, 3398-3404.
https://doi.org/10.1145/3308558.3313408 |
[4] | Tang, J. and Wang, K. (2018) Personalized Top-N Sequential Recommendation via Convolutional Sequence Embedding. Proceedings of the 11th ACM International Conference on Web Search and Data Mining, Marina del Rey, 5-9 February 2018, 565-573. https://doi.org/10.1145/3159652.3159656 |
[5] | Zhou, G., Zhu, X., Song, C., Zhu, H., Ma, X., Yan, Y., et al. (2018) Deep Interest Network for Click-Through Rate Prediction. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, 19-23 August 2018, 1059-1068. https://doi.org/10.1145/3219819.3219823 |
[6] | Zhou, G., Mou, N., Fan, Y., Pi, Q., Bian, W., Zhou, C., et al. (2019) Deep Interest Evolution Network for Click-Through Rate Prediction. Proceedings of the AAAI Conference on Ar-tificial Intelligence, 33, 5941-5948. |
[7] | Feng, Y., Lv, F., Shen, W., Wang, M., Sun, F., Zhu, Y., et al. (2019) Deep Session Interest Network for Click-Through Rate Prediction. Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao (China), 10-16 August 2019, 2301-2307. https://doi.org/10.24963/ijcai.2019/319 |
[8] | Xiao, J., Ye, H., He, X., Zhang, H., Wu, F. and Chua, T.-S. (2017) Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks. Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, 19-25 August 2017, 3119-3125. https://doi.org/10.24963/ijcai.2017/435 |
[9] | 王升升, 赵海燕, 陈庆奎, 曹健. 个性化推荐中的隐语义模型[J]. 小型微型计算机系统, 2016, 37(5): 881-889. |
[10] | Liu, W., Wang, B. and Wang, D. (2018) Improved Latent Factor Model in Movie Recommendation System. 2018 International Conference on Intelligent Autonomous Systems (ICoIAS), Singapore, 1-3 March 2018, 101-104.
https://doi.org/10.1109/ICoIAS.2018.8494074 |
[11] | Hidasi, B., Karatzoglou, A., Baltrunas, L. and Tikk, D. (2015) Session-Based Recommendations with Recurrent Neural Networks. |
[12] | Chen, J. and Abdul, A. (2019) A Ses-sion-Based Customer Preference Learning Method by Using the Gated Recurrent Units with Attention Function. IEEE Access, 7, 17750-17759. https://doi.org/10.1109/ACCESS.2019.2895647 |
[13] | Cui, R., Wang, J. and Wang, Z. (2021) Multiplicative Attention Mechanism for Multi-Horizon Time Series Forecasting. 2021 International Joint Con-ference on Neural Networks (IJCNN), Shenzhen, 18-22 July 2021, 1-6.
https://doi.org/10.1109/IJCNN52387.2021.9533598 |
[14] | 谢恩宁, 何灵敏, 王修晖. 基于注意力机制的深度协同过滤模型[J]. 中国计量大学学报, 2019, 30(2): 219-225+242. |
[15] | He, X., Liao, L., Zhang, H., Nie, L., Hu, X. and Chua, T.-S. (2017) Neural Collaborative Filtering. Proceedings of the 26th International Conference on World Wide Web, Perth, 3-7 April 2017, 173-182.
https://doi.org/10.1145/3038912.3052569 |