全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于聚类分析法的广东省区域科技竞争力的评价
Evaluation of Regional Science and Technology Competitiveness of Guangdong Province Based on Cluster Analysis Method

DOI: 10.12677/SA.2022.111009, PP. 76-85

Keywords: 科技竞争力,广东省指标体系,K-means++,聚类分析
Technological Competitiveness
, Guangdong Province Index System, K-means++, Clustering Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

结合广东省科技竞争力发展水平,从R&D经费、发明专利授权量、财政科技支出占地方财政支出比重等9个维度出发,构建广东省区域科技竞争力评价指标体系。综合广东统计年鉴和广东科技年鉴的数据,用K-means++方法将科技发展水平相似的城市聚为同类,并对不同类别的区域科技竞争力进行主观评价与比较。对广东省21个城市这一数据集进行多次不同训练集和测试集的选取,进行多次对比实验。实验结果表明广东省科技发展水平总体较高,但区域之间科技竞争力差异较大,科技发展水平不平衡。最后通过对各指标结果综合评价并提出了针对加强广东省科技竞争力的对策建议。
Combined with the development level of Guangdong Province’s science and technology competitiveness, this paper constructs the evaluation index system of Guangdong Province’s regional science and technology competitiveness from the following nine dimensions: R&D expenditure, invention patent authorization, and the proportion of financial science and technology expenditure in local financial expenditure etc. K-means++ method was utilized to cluster the cities in Guangdong Province through the data collected from Guangdong statistical yearbook and Guangdong science and technology yearbook. K-means++ clustered the cities with similar level of scientific and technological development into the same category, and make subjective evaluation and comparison of regional science and technology competitiveness of different categories. The dataset of 21 cities in Guangdong Province was divided into train dataset and test dataset several times. The experimental results show that the overall level of science and technology development in Guangdong province is high, but the differences in science and technology competitiveness between regions are large, and the level of science and technology development is unbalanced. Finally, through the comprehensive evaluation of the results of each index, the countermeasures and suggestions for strengthening the science and technology competitiveness of Guangdong province are put forward.

References

[1]  Zhao, D., Hu, X., Xiong, S., et al. (2021) K-Means Clustering and kNN Classification Based on Negative Databases. Applied Soft Computing, 110, Article ID: 107732.
https://doi.org/10.1016/j.asoc.2021.107732
[2]  Ji, J., Bai, T., Zhou, C., et al. (2013) An Improved k-Prototypes Clustering Algorithm for Mixed Numeric and Categorical Data. Neurocomputing, 120, 590-596.
https://doi.org/10.1016/j.neucom.2013.04.011
[3]  谢娟英, 周颖. 一种新聚类评价指标[J]. 陕西师范大学学报(自然科学版), 2015, 43(6): 1-8.
[4]  张鲲. 基于PCA分析法的深圳市科技人才竞争力评价研究[J]. 经济研究导刊, 2019(8): 84-90.
[5]  傅春, 杨丽. 基于熵权法和超效率DEA的中部六省科技竞争力评价[J]. 科技通报, 2017, 33(7): 258-263.
[6]  丁超勋. 基于因子分析的我国科技人才区域竞争力评价[J]. 创新科技, 2018, 18(2): 40-43.
[7]  杨杰. K均值算法中初始聚类中心的确定问题研究[D]: [硕士学位论文]. 上海: 上海师范大学, 2018.
[8]  张宇, 朱凝秀. 数据挖掘中的模糊聚类分析[J]. 工业设计, 2012(3): 71-72.
[9]  Arthur, D. and Vassilvitskii, S. (2007) K-Means++: The Advantages of Careful Seeding. Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, Louisiana, 1027-1035.
[10]  Xu, D.K. and Tian, Y.J. (2015) A Comprehensive Survey of Clustering Algorithms. Annals of Data Science, 2, 165- 193.
https://doi.org/10.1007/s40745-015-0040-1
[11]  包志强, 赵媛媛, 胡啸天, 赵研. 一种对孤立点不敏感的新的K-Means聚类算法[J]. 现代电子技, 2020(5): 109-112.
[12]  尹成祥, 张宏军, 张睿, 綦秀利, 王彬. 一种改进的K-Means算法[J]. 计算机技术与发展, 2014, 24(10): 30-33.
[13]  李良成, 杨国栋. 广东省创新型科技人才竞争力指标体系构建及评价[J]. 科技进步与对策, 2012, 29(19): 130-135.
[14]  何忠葵, 张峰, 刘颖莹. 山东省科技竞争力指标分析及与苏、浙、粤比较——基于《中国省域经济综合竞争力发展报告(2017~2018)》[J]. 科技经济导刊, 2020, 28(2): 174-175.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133