全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于深度森林的下肢股直肌疲劳检测算法
Fatigue Detection Algorithm of Lower Limb Rectus Femoris Muscle Based on Deep Forest

DOI: 10.12677/MOS.2022.112027, PP. 297-305

Keywords: 肌疲劳,股直肌,sEMG,深度森林
Muscle Fatigue
, Rectus Femoris, Surface Electromyography (sEMG), Deep Forest

Full-Text   Cite this paper   Add to My Lib

Abstract:

肌肉疲劳评估是当今社会探索与研究的热点之一,与人们日常生活健康密切相关。目前常用的肌疲劳分类方法有支持向量机(Support Vector Machine, SVM)、随机森林(Random Forest, RF)和逻辑回归等浅层机器学习方法。为了进一步提高运动过程中肌肉疲劳识别的精度,因此,本文通过设计硬件采集装置进行下肢股直肌部位肌肉疲劳实验采集数据,构建深度森林(Deep Forest, DF)模型将预处理后的表面肌电(sEMG)数据分成三类:正常(normal)、疲劳(fatigue)和极度疲劳(extreme fatigue),并与传统方法SVM和RF模型对比。实验结果表明:深度森林模型的疲劳识别效果最好,整体准确率为92%,所提出的方法在各评价指标上均优于传统方法,基于深度森林的下肢股直肌疲劳检测算法,可以作为肌肉疲劳识别的方法,为人类健康提供参考与帮助。
Muscle fatigue assessment is one of the most popular research filed recently, and it is closely related to people’s daily health. At present, the commonly used classification methods of muscle fatigue include Support Vector Machine (SVM), Random Forest (RF), logistic regression and other shallow machine learning methods. In order to further improve the accuracy of muscle fatigue recognition, this paper designs a hardware acquisition device to collect data from the muscle fatigue experiment of the rectus femoris of the lower limbs, and constructs a deep forest model to divide the preprocessed surface electromyography (sEMG) data into three categories: normal, fatigue and extreme fatigue, compared with the traditional methods of SVM and RF models. The experimental results show that the deep forest model has the best fatigue recognition effect, with an overall accuracy rate of 92%. The proposed method is superior to traditional methods in all evaluation indicators. The deep forest-based fatigue detection algorithm for the rectus femoris of the lower limbs can be used as a method of muscle fatigue recognition to provide reference and help for human health.

References

[1]  王宏鹏, 艾力?斯木吐拉. 基于表面肌电信号的高原公路驾驶员颈部疲劳试验分析[J]. 科学技术与工程, 2016, 16(26): 323-328.
[2]  隋修武, 牛佳宝, 李昊天. 基于NMF-SVM模型的上肢sEMG手势识别方法[J]. 计算机工程与应用, 2020, 56(17): 161-166.
[3]  刘光达, 董梦坤, 许蓝予. 手臂疲劳时表面肌电信号特征[J]. 科学技术与工程, 2021(25): 10690-10696.
[4]  Sheng, X., Ding, X., Guo, W., et al. (2020) Toward an Integrate Multi-Modal sEMG/MMG/NIRS Sensing System for Human-Machine Interface Robust to Muscular Fatigue. IEEE Sensors Journal, PP, 1.
https://doi.org/10.1109/JSEN.2020.3023742
[5]  陈佳旭, 谢志明, 蒋拥军. 肌肉电刺激训练对伸膝迟滞患者股内侧肌表面肌电的影响[J]. 中国实用医药, 2021, 16(22): 96-98.
[6]  Stggl, T. and Born, D.P. (2021) Near Infra-red Spectroscopy for Muscle Specific Analysis of Intensity and Fatigue during Cross-Country Skiing Competition—A Case Report. Sensors, 21, 2535.
https://doi.org/10.3390/s21072535
[7]  程宁波, 吴志明, 柯思成. 服装压力对男子骑行运动中肌肉疲劳的影响[J]. 纺织学报, 2019, 40(8): 130-135.
[8]  Waris, M.A., Rehman, M.Z.U., Niazi, I.K., et al. (2020) A Multiday Evaluation of Real-Time Intramuscular EMG Usability with ANN. Sensors, 20, 3385.
https://doi.org/10.3390/s20123385
[9]  杨铮, 王立玲, 马东. 基于自回归模型表面肌电信号检测肌肉疲劳研究[J]. 中国生物医学工程学报, 2018, 37(6): 673-679.
[10]  王鑫, 汪晋宽, 刘志刚. 基于随机森林的认知模型频谱感知算法[J]. 仪器仪表学报, 2013, 34(11): 2471-2477.
[11]  李志远, 黄亦翔, 刘成良. 基于经验模态分解与深度森林的液压泵健康评估[J]. 机械与电子, 2020, 38(5): 3-8.
[12]  吴青洋, 程旭, 邓程鹏. 基于聚类和奖惩用户模型的协算法[J]. 计算机系统应用, 2020, 29(8): 135-143.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133