全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

CRISPR/Cas9和λ-Red基因敲除技术在大肠杆菌中的应用比较
Comparative Study of CRISPR/Cas9 and λ-Red Gene Knockout Techniques in Eschrichia coli

DOI: 10.12677/AMB.2022.111001, PP. 1-10

Keywords: 大肠杆菌,CRISPR/Cas9,λ-Red,基因敲除,丙氨酸消旋酶基因
Escherichia coli
, CRISPR/Cas9, λ-Red, Gene Konckout, Alanine Racemase Gene

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要:λ-Red和CRISPR/Cas9基因敲除技术已被广泛应用于染色体基因敲除。本研究分别采用λ-Red和CRISPR/Cas9技术对大肠杆菌BL21菌株染色体丙氨酸消旋酶基因alr进行了敲除,并比较了其敲除效率。对于Red敲除技术而言,首先构建由alr上下游同源臂和卡那抗性盒FLT-kanR-FLT组成的打靶片段Lalr-FLT-kanR-FLT-Ralr,转化E. coli BL21/pKD46感受态细胞,在pKD46表达的Red重组酶作用下发生同源重组,使染色体alr被卡那抗性盒FLT-kanR-FLT替换;然后,质粒pCP20转化上述发生了alr替换的E. coli菌株感受态细胞,在pCP20表达的FLP重组酶作用下发生位点特异性重组,删除卡那抗性基因kanR;最后,对温敏型质粒进行消除,获得alr敲除突变株E. coli BL21 Δalr-Red。对于CRISPR/Cas9技术而言,首先构建敲除质粒pTargetF-alr,制备打靶供体DNA片段L-alr-R;接着,pTargetF-alr和L-alr-R共转化E. coli BL21/pCas感受态细胞,在pTargetF-alr编码的sgRNA序列引导下,质粒pCas编码的Cas9蛋白结合到alr基因切割靶点DNA,通过对双链断裂的同源重组修复实现对alr基因的无痕敲除,获得alr敲除突变株E. coli BL21 Δalr-CRISPR。实验结果显示:使用基于短、长同源臂靶打靶片段的Red技术,E. coli BL21 Δalr-Red阳性转化子检出率分别为5%和55%;而使用CRISPR/Cas技术,E. coli BL21 Δalr-CRISPR阳性转化子检出率为95%。实验结果表明:在E. coli中,使用短同源臂靶打靶片段的Red敲除技术,转化子脱靶率超高,这使阳性转化子鉴定工作量大增;使用长同源臂打靶片段的Red敲除技术,较为容易检测到阳性转化子;使用CRISPR/Cas9技术,敲除效率显著优于λ-Red技术。
CRISPR/Cas9 and λ-Red techniques have been wildly used for chromosomal gene knockout. In this study, the alanine racemase gene alr on the genome of Escherichia coli BL21 strain was deleted using the two gene knockout methods, respectively, and the efficiencies of knockout were compared. For λ-Red technique, firstly, the targeting fragments Lalr-FLT-kanR-FLT-Ralr consisting of the upstream and downstream homologous arms of the gene alr and the kanamycin-resistant cassette FLT-kanR-FLT were prepared, transformed into the E. coli BL21/pKD46 competent cells, and chromosomal alr was replaced by FLT-kanR-FLT by pKD46-Red enzymes-mediated homologous recombination; secondly, kanR was deleted by pCP20-FLP enzyme-mediated site-specific recombination; finally, temperature-sensitive plasmids were eliminated, generating the mutant strain E. coli BL21 Δalr-Red. For CRISPR/Cas9 technique, firstly, knockout plasmid pTargetF-alr was constructed and targeting donor fragment L-alr-R was prepared; secondly, pTargetF-alr and L-alr-R were co-transformed into the E. coli BL21/pCas competent cells; scarless knockout of alr was achieved by cleavage of alr by sgRNA guiding-Cas9 protein and sequential double strands breakage repair based on homologous recombination, generating the mutant strain E. coli BL21 Δalr-CRISPR. The experimental results showed that the rates of the E. coli BL21 Δalr-Red positive transformants were 5% and 55% using short homologous arms and long homologous arms λ-Red techniques, respectively, while the rate of the E. coli BL21 Δalr-CRISPR positive transformants was 95% using CRISPR/Cas9 techniques. These results

References

[1]  黄星榞, 隋明宇, 侯文清, 等. RecA蛋白介导同源重组的步进式链交换[J]. 物理学报, 2020, 69(20): 351-358.
[2]  张宇微. RecA蛋白所介导的同源重组机制的研究[D]: [博士学位论文]. 北京: 中国科学院大学, 2017.
[3]  Yang, D., Boyer, B., Pre?vost, C., et al. (2015) Integrating Multi-Scale Data on Homologous Recombination into a New Recognition Mechanism Based on Simulations of the RecA-ssDNA/dsDNA Structure. Nucleic Acids Research, 43, 10251-10263.
https://doi.org/10.1093/nar/gkv883
[4]  Jelinkova, S., Martyniak, A., Dulak, J., et al. (2021) Derivation of Human Pluripotent Stem Cell Line via CRISPR/Cas9 Mediated Deletion of Exon LAMA2 Gene (DMBi001-A-1). Stem Cell Research, 56, Article ID: 102529.
https://doi.org/10.1016/j.scr.2021.102529
[5]  Marisa, E., Jasmine, R., Christian, X., et al. (2016) Lambda Red-Mediated Recombineering in the Attaching and Effacing Pathogen Escherichia albertii. Biological Procedures Online, 18, 1-13.
https://doi.org/10.1186/s12575-015-0032-8
[6]  林锦莹, 赵兰, 欧阳松应. CRISPR/Cas9: 基因编辑的新时代[J]. 中国细胞生物学学报, 2021, 43(3): 647-654.
[7]  Zhao, R., Lu, J., Li, Q., et al. (2021) Single-Cell Heterogeneity Analysis and CRISPR Screens in MIN6 Cell Line Reveal Transcriptional Regulators of Insulin. Cell Cycle, 20, 1-13.
https://doi.org/10.1080/15384101.2021.1969204
[8]  Yang, G. and Huang, X. (2019) Methods and Applications of CRISPR/Cas System for Genome Editing in Stem Cells. Cell Regeneration, 8, 33-41.
https://doi.org/10.1016/j.cr.2019.08.001
[9]  雷恩, 苗明三, 曹艺明, 等. CRISPR/Cas9基因编辑技术在病毒感染性疾病研究中的应用[J]. 军事医学, 2021, 45(5): 384-389.
[10]  邱伟, 周学东, 李明云. 丙氨酸消旋酶的研究进展[J]. 国际口腔医学杂志, 2016, 43(2): 228-232.
[11]  Liu, L., Yoshimura, T., Endo, K., et al. (1998) Compensation for D-Glutamate Auxotrophy of Escherichia coli WM335 by D-Amino Acid Aminotransferase Gene and Regulation of murI Expression. Bioscience Biotechnology & Biochemistry, 62, 193-195.
https://doi.org/10.1271/bbb.62.193
[12]  Datsenko, K.A. and Wanner, B. (2000) One-Step Inactivation of Chromosomal Genes in Escherichia coli K-12 Using PCR Products. Proceedings of the National Academy of Sciences, 97, 6640-6645.
https://doi.org/10.1073/pnas.120163297
[13]  Jiang, Y., Chen, B., Duan, C., et al. (2015) Multigene Editing in the Escherichia coli Genome via the Crispr-Cas9 System. Applied & Environmental Microbiology, 81, 2506-2514.
https://doi.org/10.1128/AEM.04023-14
[14]  Dower, W.J., Miller, J.F. and Ragsdale, C.W. (1988) High Efficiency Transformation of E. coli by High Voltage Electroporation. Nucleic Acids Research, 16, 6127-6145.
https://doi.org/10.1093/nar/16.13.6127
[15]  李鑫, 李亚芯, 戴建君. Red两步同源重组法在大肠杆菌基因敲除中的应用[J]. 中国畜牧兽医, 2017, 44(7): 1934-1940.
[16]  Mohammad, J.H., Charles, M.T., Dawei, S., et al. (2015) Genome Modifications and Cloning Using a Conjugally Transferable Recombineering System. Biotechnology Reports, 8, 24-35.
https://doi.org/10.1016/j.btre.2015.08.005
[17]  许元, 金玉翠, 乐珅. CRISPR基因编辑的脱靶效应应对策略综述[J]. 基因组学与应用生物学, 2020, 39(6): 2921-2929.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133