|
下肢外骨骼助行机器人神经网络自适应滑模控制研究
|
Abstract:
穿戴式下肢外骨骼助行机器人是一种能够辅助人体进行仿人式步态运动的智能一体化设备,该系统需要良好的轨迹跟踪效果。为提高穿戴式下肢外骨骼助行机器人的轨迹跟踪精度及稳定性,基于拉格朗日法建立动力学模型,研究分析RBF神经网络自适应滑模控制算法。通过MATLAB-Simulink仿真,对比分析滑模算法和RBF神经网络自适应滑模控制算法,获得了两种算法下髋关节、膝关节的角位移及角速度控制曲线及力矩,并对比了两种算法的位置跟踪误差。实验结果表明,相比于滑模控制算法,RBF神经网络自适应滑模控制可以改善抖振情况,提高控制精度和抗干扰能力。
The wearable lower extremity exoskeleton walking aid robot is a kind of intelligent integrated device. It can assist the human body to perform human-like gait movement. The system needs a good track tracking effect. To make the tracking accuracy and stability of the system better, a dynamic model was established by Lagrangian method, and the RBF neural network adaptive sliding mode control algorithm was studied and analyzed. Through MATLAB-Simulink simulation, the sliding mode algorithm and RBF neural network adaptive sliding mode control algorithm are compared and analyzed. Through simulation, the angle and speed control curves of the hip and knee joints under the two algorithms are obtained. The torque curve is also obtained. On this basis, the position tracking errors of the two algorithms are compared. Experimental results show that RBF neural network adaptive sliding mode control can improve the chattering of sliding mode control, and improve the control accuracy and anti-interference ability of the system.
[1] | 金增珂. 基于神经网络及滑模控制的非完整移动机器人轨迹跟踪控制[D]: [硕士学位论文]. 淄博: 山东理工大学, 2020. https://doi.org/10.27276/d.cnki.gsdgc.2020.000387 |
[2] | Matsuda, M., Mataki, Y. and Mutsuzaki, H. (2018) Immediate Effects of a Single Session of Robot-Assisted Gait Training Using Hybrid Assistive Limb (HAL) for Cerebral Palsy. Journal of Physical Therapy Science, 30, 207-212.
https://doi.org/10.1589/jpts.30.207 |
[3] | Ghan, J., Steger, R. and Kazerooni, H. (2012) Control and System Identi-fication for the Berkeley Lower Extremity Exoskeleton (BLEEX). Advanced Robotics, 20, 989-1014. https://doi.org/10.1163/156855306778394012 |
[4] | 杨巍, 张秀峰, 杨灿军. 基于人机5杆模型的下肢外骨骼系统设计[J]. 浙江大学学报(工学版), 2014, 48(3): 430-435. |
[5] | 魏小东, 孟青云, 喻洪流, 曹武警, 胡冰山. 下肢外骨骼机器人研究进展[J]. 中国康复医学杂志, 2019, 34(4): 491-495. |
[6] | 程思远, 陈广锋. 下肢康复外骨骼机器人模糊PID控制研究与仿真[J]. 测控技术, 2019, 38(12): 22-28. |
[7] | 李沈炎, 韩亚丽, 陈茹雯, 吴枫, 糜章章. 基于滑模PID控制的下肢康复外骨骼控制研究[J]. 组合机床与自动化加工技术, 2021(3): 98-101+105. https://doi.org/10.13462/j.cnki.mmtamt.2021.03.023 |
[8] | Liu, Q., et al. (2021) Adaptive Bias RBF Neural Network Control for a Robotic Manipulator. Neurocomputing, 447, 213-223. https://doi.org/10.1016/j.neucom.2021.03.033 |
[9] | Mohanta, J.K., et al. (2018) Development and Control of a New Sitting-Type Lower Limb Rehabilitation Robot. Computers and Electrical Engineering, 67, 330-347. https://doi.org/10.1016/j.compeleceng.2017.09.015 |
[10] | 惠易佳. 基于神经网络自适应滑模的智能汽车纵向动力学控制研究[D]: [硕士学位论文]. 镇江: 江苏大学, 2020.
https://doi.org/10.27170/d.cnki.gjsuu.2020.000215 |
[11] | Chang, Z., et al. (2021) Research on Manipulator Track-ing Control Algorithm Based on RBF Neural Network. Journal of Physics: Conference Series, 1802, Article ID: 032072. https://doi.org/10.1088/1742-6596/1802/3/032072 |