|
不同叶尖速比下VAWT的叶片冰型及性能影响
|
Abstract:
风力机叶片结冰后会造成大量的能量损失,本文在Fensap-ice中应用多时间步的方法,模拟静叶片表面的结冰,验证结果表明,本文冰型计算的方法具有准确性,模拟得到不同相对风速下的冰型。然后,构建垂直轴风力机整机模型,应用Ansys-cfx计算不同叶尖速比下垂直轴风力机结冰前后的功率系数,发现不同叶尖速比下结冰对功率系数的影响不同,随着叶尖速比的增大,功率系数下降程度增加。
Wind turbine blades will cause a lot of energy loss after icing. In this paper, the multi-time step method is applied in Fensap-ice to simulate the icing on the surface of static blades. The verification results show that the method of ice shape calculation in this paper is accurate, and the ice shapes under different relative wind speeds are simulated. Then, the whole model of vertical axis wind turbine is built, and the power coefficient of vertical axis wind turbine before and after icing under different tip speed ratios is calculated by Ansys-cfx. It is found that icing has different effects on the power coefficient under different tip speed ratios, and the power coefficient decreases with the in-crease of tip speed ratios.
[1] | Fortin, G. and Perron, J. (2009) Wind Turbine Icing and De-Icing. AIAA Journal, 2009, 274-297. |
[2] | 国务院发布关于做好碳达峰碳中和工作的意见[J]. 铸造工程, 2021, 45(6): 54. |
[3] | Ashrafi, Z.N., Ghaderi, M. and Sedaghat, A. (2015) Parametric Study on Off-Design Aerodynamic Performance of a Horizontal Axis wind Turbine Blade and Proposed Pitch Control. Energy Conversion and Management, 93, 349-356.
https://doi.org/10.1016/j.enconman.2015.01.048 |
[4] | MacPhee, D. and Beyene, A. (2012) Recent Advances in Rotor Design of Vertical Axis Wind Turbines. Wind Engineering, 36, 647-665. https://doi.org/10.1260/0309-524X.36.6.647 |
[5] | Etemaddar, M., Hansen, M.O.L. and Moan, T. (2014) Wind Turbine Aerodynamic Response under Atmospheric Icing Conditions. Wind Energy, 17, 241-265. |
[6] | Battisti, L. (2015) Wind Turbines in Cold Climates. Springer International Publishing, Cham.
https://doi.org/10.1007/978-3-319-05191-8 |
[7] | ANSYS FENSAP-ICE User Manual 2017. |
[8] | 杨倩, 常士楠, 袁修干. 水滴撞击特性的数值计算方法研究[J]. 航空学报, 2002(2): 173-176. |
[9] | Fu, P. and Farzaneh, M. (2009) A CFD Approach for Modeling the Rime-Ice Accretion Process on a Horizontal-Axis Wind Turbine. Journal of Wind Engineering & Industrial Aerodynamics, 98, 181-188.
https://doi.org/10.1016/j.jweia.2009.10.014 |
[10] | Antikainen, P. and Peuranen, S. (2001) Ice Loads, Case Study. Boreas, 1-17. |
[11] | 郑玉巧, 潘永祥, 魏剑峰, 刘哲言. 叶片翼型结冰形态及其气动特性[J]. 南京航空航天大学学报, 2020, 52(4): 632-638. |
[12] | Yirtici, O. and Tuncer, I.H. (2021) Aerodynamic Shape Optimization of Wind Turbine Blades for Minimizing Power Production Losses Due to Icing. Cold Regions Science and Technology, 185, Article ID: 103250.
https://doi.org/10.1016/j.coldregions.2021.103250 |
[13] | Rustem, M., Zhandos, B., Saltanat, B. and Aleksandar, G. (2021) Numerical Simulations on Static Vertical Axis Wind Turbine Blade Icing. Renewable Energy, 170, 997-1007. https://doi.org/10.1016/j.renene.2021.02.023 |
[14] | 郭琪磊, 牛俊杰, 安博, 桑为民, 周峰. 混合相态冰晶积冰的数值研究[J]. 空气动力学学报, 2021, 39(2): 168-175. |
[15] | Shin, J. and Bond, T.H. (1992) Experimental and Computational Ice Shapes and Resulting Drag Increase for a NACA 0012 Airfoil. NASA Technical Memorandum 105743. |
[16] | Wright, W.B. (2005) Validation Results for LEWICE 3.0. 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, 10-13 January 2005, 15109-15134. https://doi.org/10.2514/6.2005-1243 |
[17] | 郝艳捧, 刘国特, 阳林, 陈彦, 李立涅. 风力机组叶片覆冰数值模拟及其气动载荷特性研究[J]. 电工技术学报, 2015, 30(10): 292-300. |
[18] | Zhang, W., Lin, Y.F. and Chen, J.P. (2011) Numerical Simulation of Ice Accretion and Parameter Effects Based on Eulerian Droplet Model. Journal of Nanjing University of Aeronautics & Astronautics, 43, 375-380. |
[19] | Langtry, R.B., Menter, F.R., Likki, S.R., et al. (2006) A Correlation-Based Transition Model Using Local Variables—Part II: Test Cases and Industrial Applications. Journal of Turbomachinery, 128, 423-434.
https://doi.org/10.1115/1.2184353 |