全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

新安江模型参数率定的多核并行遗传算法
Multi-Core Parallel Genetic Algorithm for Parameter Calibration of Xin’anjiang Model

DOI: 10.12677/JWRR.2022.111008, PP. 77-83

Keywords: 新安江模型,并行遗传算法,参数率定
Xin’anjiang Model
, Parallel Genetic Algorithm, Parameter Calibration

Full-Text   Cite this paper   Add to My Lib

Abstract:

新安江模型参数众多,率定计算工作量大、传统率定参数精度难以满足实际生产需要的特点。本文提出了一种参数率定的多核并行遗传算法,以洪峰流量、峰现时间和洪水总量为评价目标,建立多准则参数率定模型,并采用模糊集思想把多准则问题转化为单一目标优选问题。其次针对遗传算法个体适应度计算时间较长,采用主从式并行策略实现遗传算法的并行化,提高系统计算效率。最后以我国南方地区酉水流域凤滩水库为例,该方法不仅可获得高质量的模型参数,保证模型的预报准确性,同时可解决新安江模型参数率定耗时长等问题,有效提高模型参数率定效率,为模型参数校核提供参考。
Aiming at the characteristics of many parameters of Xin’anjiang model, heavy workload of calibration calculation and difficulty of traditional calibration parameter accuracy to meet the needs of actual pro-duction, a multi-core parallel genetic algorithm for parameter calibration is proposed. Taking the peak discharge, peak time and total flood as the evaluation objectives, a multi criteria parameter calibration model is established, and the multi criteria problem is transformed into a single objective optimization problem by using the idea of fuzzy set. Secondly, in view of the long computing time of individual fitness of genetic algorithm, the master-slave parallel strategy is adopted to realize the parallelization of genetic algorithm and improve the computing efficiency of the system. Finally, taking Fengtan Reservoir in Youshui Basin in southern China as an example, this method can not only obtain high-quality model parameters and ensure the prediction accuracy of the model, but also solve the problems of long time-consuming in Xin’anjiang model parameter calibration, effectively improve the efficiency of model parameter calibration and provide reference for model parameter verification.

References

[1]  何斌, 刘宝库, 卓闻涛, 等. 考虑玉石水库影响的碧流河水库洪水预报方式[J/OL]. 水力发电: 1-5[2021-12-16]. http://kns.cnki.net/kcms/detail/11.1845.TV.20211209.0156.004.html HE Bin, LIU Baoku, ZHUO Wentao, et al. Flood forecasting method of Biliuhe reservoir considering the influence of Yushi reservoir. Hydropower: 1-5[2021-12-16]. http://kns.cnki.net/kcms/detail/11.1845.TV.20211209.0156.004.html (in Chinese)
[2]  邱文怡, 朱永军, 湛忠宇. 新安江产流和TANK汇流耦合模型在南方湿润地区的应用[J]. 人民珠江, 2021, 42(2): 19-24. QIU Wenyi, ZHU Yongjun and ZHAN Zhongyu. Application of Xin’anjiang runoff generation and tank confluence coupling model in humid areas of South China. People’s Pearl River, 2021, 42(2): 19-24. (in Chinese)
[3]  孙娜, 周建中, 张海荣, 等. 新安江模型与水箱模型在柘溪流域适用性研究[J]. 水文, 2018, 38(3): 37-42. SUN Na, ZHOU Jianzhong, ZHANG Hairong, et al. Study on applicability of Xin’anjiang model and water tank model in Zhexi Basin. Hydrology, 2018, 38 (3): 37-42. (in Chinese)
[4]  LIAO, S. L., SUN, Q. Y., CHEN, C. T., et al. Multicore parallel genetic algorithm with tabu strategy for rainfall-runoff model calibration. Journal of Hydrologic Engineering, 2017, 22(8): 1136-1149.
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001542
[5]  张超, 姜景山. 新安江模型参数自动优化率定的SCE-UA算法应用研究[J]. 三峡大学学报, 2020, 42(6): 18-23. ZHANG Chao, JIANG Jingshan. Application of SCE-UA algorithm for automatic optimization and calibration of Xin’anjiang model parameters. Journal of China Three Gorges University, 2020, 42(6): 18-23. (in Chinese)
[6]  阚光远, 洪阳, 梁珂, 等. 基于GPU加速的水文模型参数率定[J]. 人民长江, 2019, 50(5): 65-69+75. KAN Guangyuan, HONG Yang, LIANG Ke, et al. Parameter calibration of hydrological model based on GPU acceleration. Yangtze River, 2019, 50(5): 65-69+75. (in Chinese)
[7]  刘佩瑶, 郝振纯, 王国庆, 等. 新安江模型和改进BP神经网络模型在闽江水文预报中的应用[J]. 水资源与水工程学报, 2017, 28(1): 40-44. LIU Peiyao, HAO Zhenchun, WANG Guoqing, et al. Application of Xin’anjiang model and improved BP neural network model in hydrological prediction of Minjiang River. Journal of Water Resources and Water Engineering, 2017, 28(1): 40-44. (in Chinese)
[8]  陆旻皎. 新安江模型研究的回顾和展望[J]. 水利学报, 2021, 52(4): 432-441. LU Minjiao. Review and prospect of Xin’anjiang model research. Journal of Hydraulic Engineering, 2021, 52(4): 432-441. (in Chinese)
[9]  刘志萍, 杨华, 周雨, 等. 基于遗传算法的江西七一水库来水流量新安江预报模型参数优化[J]. 气象与减灾研究, 2020, 43(2): 149-154. LIU Zhiping, YANG Hua, ZHOU Yu, et al. Parameter optimization of Xin’anjiang prediction model for inflow of Qiyi reservoir in Jiangxi Province based on genetic algorithm. Meteorology and Disaster Reduction Research, 2020, 43(2): 149-154. (in Chinese)
[10]  刘永和, 冯锦明, 徐文鹏. 分布式水文模型的GPU并行化及快速模拟技术[J]. 水文, 2015, 35(4): 20-26. LIU Yonghe, FENG Jinming and XU Wenpeng. GPU parallelization and fast simulation technology of distributed hydrological model. Hydrology, 2015, 35(4): 20-26. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133