全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于EMD-LSTM模型的右江水库日入库流量预测
Inflow Prediction of Youjiang Reservoir Based on EMD-LSTM model

DOI: 10.12677/JWRR.2022.111002, PP. 20-29

Keywords: 入库流量,经验模态分解,长短期记忆网络
Reservoir Inflow
, Empirical Mode Decomposition, Long-Short-Term Memory Network

Full-Text   Cite this paper   Add to My Lib

Abstract:

入库流量预测可为水电站水库防汛抗旱、水位控制等提供必要依据。然而传统物理建模方法预测入库流量对数据资料要求较高,在资料相对匮乏地区难以应用。针对入库流量序列非线性非平稳以及原始数据包含噪声等问题,将经验模态分解(empirical mode decomposition, EMD)良好的滤波特性和长短期记忆(long-short-term memory, LSTM)神经网络强大的非线性映射能力相结合,用于右江水库日入库流量预测。首先采用EMD方法对入库流量序列进行分解,然后对分解的各分量分别建立LSTM进行预测,最后加和重构得到预测结果,同时采用单一LSTM作为对比。在右江水库日入库流量预测中,EMD-LSTM预测结果平均绝对误差(MAE)为29.46 m3/s,平均相对误差(MAPE)为11.06%,确定性系数(DC)为0.95,各评价指标均优于单一LSTM,表明EMD-LSTM在右江水库日入库流量预测中具有很好的适用性,明显提高了日入库流量预测精度,对今后右江水库安全经济运行具有重要指导意义。
The prediction of inflow can provide necessary basis for flood prevention, drought relief and water level control in hydropower reservoirs. However, traditional prediction methods based on physical models have a high demand for data and are difficult to apply when data is relatively scarce. The inflow series has characteristics of nonlinearity and nonstationary. And the original data contains some noise. To solve these problems, empirical mode decomposition (EMD) and long-short-term memory (LSTM) neural network were combined to predict Youjiang Reservoir daily inflow, which made full use of the good filtering property of EMD and the powerful nonlinear mapping ability of LSTM. Firstly, the EMD was applied to decompose the inflow series, then the LSTM was built separately for each component from EMD for prediction, and finally each prediction result was superposed to obtain the final prediction result. Meanwhile, a single LSTM was used as comparison. The results indicated that the EMD-LSTM model exhibited better than the single LSTM in terms of the average absolute error (MAE = 29.46 m3/s), the average relative error (MAPE = 11.06%) and the coefficient of certainty (DC = 0.95). Based on the above results, EMD-LSTM has good applicability and obviously improves the prediction accuracy, which is of great significance to guide the safe and economic operation in the future.

References

[1]  唐海华, 陈森林, 赵云发, 等. 三峡水库入库流量计算方法研究[J]. 中国农村水利水电, 2008(4): 26-28. TANG Haihua, CHEN Senlin, ZHAO Yunfa, et al. Study on calculation method of inflow of Three Gorges Reservoir. China Rural Water and Hydropower, 2008(4): 26-28. (in Chinese)
[2]  郭华, 陈勇, 马耀光. 组合灰色预测模型在入库流量预测中的应用[J]. 干旱地区农业研究, 2012, 30(3): 96-100. GUO Hua, CHEN Yong and MA Yaoguang. Application of combined grey forecasting model in the prediction of incoming flow. Agricultural Research in the Arid Areas, 2012, 30(3): 96-100. (in Chinese)
[3]  于琼, 田宪. 基于组合模型的非线性时间序列预测算法[J]. 计算机工程与科学, 2021, 43(10): 1817-1825. YU Qiong, TIAN Xian. A nonlinear time series prediction algorithm based on combination model. Computer Engineering & Science, 2021, 43(10): 1817-1825. (in Chinese)
[4]  KURT, S., TUNAY, K. B. STARMA models estimation with Kalman Filter: The case of regional bank deposits. Procedia Social and Behavioral Sciences, 2015, 195: 2537-2547.
https://doi.org/10.1016/j.sbspro.2015.06.441
[5]  田楚杰. 神经网络在时间序列与时空序列流量预测中的应用与研究[D]: [博士学位论文]. 北京: 北京邮电大学, 2021. TIAN Chujie. Research of temporal flow prediction and spatial-temporal flow prediction based on neural networks. Ph.D. Thesis, Beijing: Beijing University of Posts and Telecommunications, 2021. (in Chinese)
[6]  李强, 唐锋, 陈卓, 等. Elman神经网络在水电站入库流量短期预测中的应用[J]. 华电技术, 2015, 37(7): 1-3+76. LI Qiang, TANG Feng, CHEN Zhuo, et al. Application of Elman neural network in short-term reservoir inflow forecasting in hydropower station. Huadian Technology, 2015, 37(7): 1-3+76. (in Chinese)
[7]  周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6): 1229-1251. ZHOU Feiyan, JIN Linpeng and DONG Jun. Review of convolutional neural network. Chinese Journal of Computers, 2017, 40(6): 1229-1251. (in Chinese)
[8]  徐廷兵, 马光文, 黄炜斌, 等. 基于小波分析的BP网络预测模型及其在年径流预测中的应用[J]. 水电能源科学, 2012, 30(2): 17-19. XU Tingbing, MA Guangwen, HUANG Weibin, et al. BP network prediction model and its application in annual runoff forecasting based on wavelet analysis. Water Resources and Power, 2012, 30(2): 17-19. (in Chinese)
[9]  HU, C., WU, Q., LI, H., et al. Deep learning with a long lhort-term memory networks approach for rainfall-runoff simulation. Water, 2018, 10(11): 1543.
https://doi.org/10.3390/w10111543
[10]  KRATZERT, F., KLOTZ, D., BRENNER, C., et al. Rainfall-runoff modeling using long short-term memory (LSTM) networks. Hydrology and Earth System Sciences, 2018, 22(11): 6005-6022.
https://doi.org/10.5194/hess-22-6005-2018
[11]  殷兆凯, 廖卫红, 王若佳, 等. 基于长短时记忆神经网络(LSTM)的降雨径流模拟及预报[J]. 南水北调与水利科技, 2019, 17(6): 1-9+27. YIN Zhaokai, LIAO Weihong, WANG Ruojia, et al. Rainfall-runoff modeling and forecasting based on long short-term memory (LSTM). South-to-North Water Transfers and Water Science & Technology, 2019, 17(6): 1-9+27. (in Chinese)
[12]  秦鹏, 陈雨, 卢文龙. 缺失数据条件下基于GAN与LSTM的水文预报研究[J]. 人民黄河, 2021, 43(6): 16-20+27. QIN Peng, CHEN Yu and LU Wenlong. Hydrological forecast based on GAN and LSTM under the condition of missing data. Yellow River, 2021, 43(6): 16-20+27. (in Chinese)
[13]  石晴宜, 董增川, 罗赟, 等. 基于机器学习方法的洪泽湖入湖水质评价及预测研究[J/OL]. 中国农村水利水电, 1-14[2021-12-03]. http://kns.cnki.net/kcms/detail/42.1419.TV.20210616.1626.024.html SHI Qingyi, DONG Zengchuan, LUO Yun, et al. Evaluation and prediction of water quality of Hongze Lake based on machine learning method. China Rural Water and Hydropower, 1-14[2021-12-03]. http://kns.cnki.net/kcms/detail/42.1419.TV.20210616.1626.024.html (in Chinese)
[14]  TIAN, P., JIANZHONG, Z., CHU, Z, et al. Streamflow forecasting using empirical wavelet transform and artificial neural networks. Water, 2017, 9(6): 406.
https://doi.org/10.3390/w9060406
[15]  孙望良, 周建中, 彭利鸿, 等. DFA_VMD_LSTM组合日径流预测模型研究[J]. 水电能源科学, 2021, 39(3): 12-15. SUN Wangliang, ZHOU Jianzhong, PENG Lihong, et al. Study on DFA_VMD_LSTM hybrid daily runoff forecasting model. Water Resources and Power, 2021, 39(3): 12-15. (in Chinese)
[16]  HUANG, N. E., SHEN, Z., LONG, S. R., et al. The empirical mode decomposition method and the Hilbert spectrum for non-stationary time series analysis. Proceedings of the Royal Society of London. Series A, 1998, 454: 903-995.
https://doi.org/10.1098/rspa.1998.0193
[17]  岳相臣. 经验模态分解算法应用研究[D]: [硕士学位论文]. 西安: 西安电子科技大学, 2013. YUE Xiangchen. Research on empirical mode decomposition algorithm’s application. Master’s Thesis. Xi’an: Xi’an University, 2013. (in Chinese)
[18]  王亦斌, 孙涛, 梁雪春, 等. 基于EMD-LSTM模型的河流水量水位预测[J]. 水利水电科技进展, 2020, 40(6): 40-47. WANG Yibin, SUN Tao, LIANG Xuechun, et al. Prediction of river water flow and water level based on EMD-LSTM model. Advances in Science and Technology of Water Resources, 2020, 40(6): 40-47. (in Chinese)
[19]  陈川, 陈冬林, 何李凯. 基于BPNN-EMD-LSTM组合模型的城市短期燃气负荷预测[J]. 安全与环境工程, 2019, 26(1): 149-154+169. CHEN Chuan, CHEN Donglin and HE Likai. Short-term forecast of urban natural gas load based on BPNN-EMD-LSTM combined model. Safety and Environmental Engineering, 2019, 26(1): 149-154+169. (in Chinese)
[20]  HOCHREITER, S, SCHMIDHUBER, J. Long short-term memory. Neural Computation, 1997, 9(8): 1735-1780.
https://doi.org/10.1162/neco.1997.9.8.1735

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133