全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

坝堤瞬间溃决洪水过程研究
Study on Instantaneous Outburst Flood Process of Dambreak

DOI: 10.12677/JWRR.2022.111010, PP. 93-101

Keywords: 坝堤瞬间溃决,洪水波演进,水动力模型,圣维南方程
Dam Instantaneous Collapse
, Flood Wave Evolution, Hydrodynamic Model, Saint Venant Equation

Full-Text   Cite this paper   Add to My Lib

Abstract:

坝堤溃决形成的洪水,流量大、传播速度快,其破坏性极大。本文建立了坝堤瞬间溃决与河道洪水波演进耦合的数学模型,并以泉河流域红岩一级水电站为对象,研究分析了红岩一级发生溃坝事故后的溃口洪水过程及其洪水波演进过程,预测溃决后对下游河道造成的洪水影响。结果显示,2号断面流量和红岩一级的出库流量在同一时刻达到峰值,红岩一级出库流量峰值为17,817 m3/s,2号断面的峰值流量为15,281 m3/s;经过28分钟,洪峰到达大峡水库,洪峰流量为10,190 m3/s。该模型可以较好地预测溃坝过程及下游河道洪水波演进过程,模型计算速度较快,满足应急过程中的洪水演进计算快速、高效、实时的要求。
The flood formed by dam break has large flow and fast propagation speed, and it is very destructive. In this paper, the mathematical model of the coupling between the instantaneous dam break and the flood wave evolution of the river channel is established. Taking the Hongyan First-Level Hydropower Station in the Quanhe River basin as an example, the flood process of the breach and the flood wave evolution after the dam break accident are studied and analyzed, and the flood control effect on the downstream river channel after the dam break is predicted. The results show that the flow rate of No. 2 section and the flow rate of Hongyan first level reach the peak at the same time, the peak flow rate of Hongyan first level is 17,817 m3/s, and the peak flow rate of No. 2 section is 15,281 m3/s. After 28 minutes, the flood peak reaches the Daxia Reservoir, and the peak flow is 10,190 m3/s. The model can better predict the dam-break process and the downstream river flood wave evolution process, and has a fast calculation speed and meets the requirements of fast, efficient and real-time flood evolution in the emergency process.

References

[1]  王丽萍, 傅湘. 洪灾风险及经济分析[M]. 武汉: 武汉水利电力大学出版社, 1999. WANG Liping, FU Xiang. Flood risk and economic analysis. Wuhan: Wuhan University of Water Resources and Electric Power Press, 1999. (in Chinese)
[2]  谢任之. 溃坝水力学[M]. 济南: 山东科学技术出版社, 1993. XIE Renzhi. Dam-break hydraulics. Jinan: Shandong Science and Technology Press, 1993. (in Chinese)
[3]  李炜. 水力计算手册[M]. 第2版. 北京: 中国水利水电出版社, 2006. LI Wei. Hydraulic calculation manual. 2nd Edition. Beijing: China Water Conservancy and Hydropower Press, 2006. (in Chinese)
[4]  姚志坚, 彭瑜. 溃坝洪水数值模拟及其应用[M]. 北京: 中国水利水电出版社, 2013. YAO Zhijian, PENG Yu. Numerical simulation of dam-break flood and its application. Beijing: China Water Resources and Hydropower Press, 2013. (in Chinese)
[5]  戴荣尧, 王群. 溃坝最大流量的研究[J]. 水利学报, 1983(2): 15-23. DAI Rongyao, WANG Qun. Research on the maximum discharge of dam-breaking. Journal of Hydraulic Engineering, 1983(2): 15-23. (in Chinese)
[6]  汪德灌. 计算水力学理论与应用[M]. 南京: 河海大学出版社, 1989. WANG Deguan. Computational hydraulics theory and application. Nanjing: Hehai University Press, 1989. (in Chinese)
[7]  程心一. 计算流体力学[M]. 北京: 科学出版社, 1984. CHENG Xinyi. Computational fluid dynamics. Beijing: Science Press, 1984. (in Chinese)
[8]  张长高. 水动力学[M]. 北京: 高等教育出版社, 1993. ZHANG Changgao. Hydrodynamics. Beijing: Higher Education Press, 1993. (in Chinese)
[9]  谈佩文, 等. 淮河中游洪水演进模型[J]. 水科学进展, 1996, 7(2): 124-130. TAN Peiwen, et al. A flood routine model on Huaihe middle stream. Advance in Water Science, 1996, 7(2): 124-130. (in Chinese)
[10]  YEE, H. C. Construction of explicit and implicit symmetric TVD schemes and their applications. Journal of Computational Physics, 1987, 68(1): 151-179.
https://doi.org/10.1016/0021-9991(87)90049-0
[11]  BRUFAU, P., GARCIA NAVARRO, P. Two dimensional dam break flow simulation. International Journal for Numerical Methods in Fluids, 2000, 33(1): 35-57.
https://doi.org/10.1002/(SICI)1097-0363(20000515)33:1<35::AID-FLD999>3.0.CO;2-D
[12]  ZHAO, D. H., et al. Fi-nite-volume two-dimensional unsteady-flow model for river basins. Journal of Hydraulic Engineering, 1994, 120(7): 863-883.
https://doi.org/10.1061/(ASCE)0733-9429(1994)120:7(863)
[13]  HUBBARD, M. E., ROE, P. L. Compact high-resolution algorithms for time-dependent advection on unstructured grids. International Journal for Numerical Methods in Fluids, 2000, 33(5): 700-736.
https://doi.org/10.1002/1097-0363(20000715)33:5<711::AID-FLD27>3.0.CO;2-O

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133