|
基于ANSYS Workbench的电主轴热误差预测
|
Abstract:
针对电主轴受热变形影响加工精度的问题,本文先运用Solidworks软件对电主轴进行几何建模,然后通过有限元分析软件ANSYS Workbench对电主轴进行瞬态热–结构耦合分析,从而预测出电主轴热误差随时间变化的趋势,最后以实验室的TC-E650型数控雕铣机为研究对象验证仿真结果。实验结果表明:电主轴在运行的前1500 s内热误差变化幅度大,短时间内迅速增长到40 μm,而后缓慢增长,在运行约4500 s时达到热稳态,主轴末端最大轴向热误差为52 μm,实验结果有效验证了电主轴热误差的有限元瞬态预测模型的精度,为电主轴的热平衡设计及热误差的补偿提供了参考。
In order to solve the problem that the thermal deformation of motorized spindle affects the machining accuracy, this paper first uses Solidworks software for geometric modeling of motorized spindle, and then carries out transient thermal-structure coupling analysis of motorized spindle by ANSYS Workbench finite element analysis software, so as to predict the trend of thermal error of motorized spindle with time change. Finally, the tC-E650 CNC engraving and milling machine in the laboratory is taken as the research object to verify the simulation results. The experimental results show that: The thermal error of the motorized spindle changes greatly in the first 1500 s of operation, rapidly increases to 40 μm in a short time, then slowly increases, and reaches thermal steady state at about 4500 s. The maximum axial thermal error of the motorized spindle is 52 μm. The experimental results effectively verify the accuracy of the finite element transient prediction model of thermal error of the motorized spindle. It provides reference for thermal balance design and thermal error compensation of motorized spindle.
[1] | Weck, M., Mckeown, P., Bonse, R., et al. (1995) Reduction and Compensation of Thermal Errors in Machine Tools. CIRP Annals—Manufacturing Technology, 44, 589-598. https://doi.org/10.1016/S0007-8506(07)60506-X |
[2] | 王海同, 李铁民, 王立平, 等. 机床热误差建模研究综述[J]. 机械工程学报, 2015, 51(9): 119-128. |
[3] | 邓小雷, 戴温克, 周翎飞, 等. 数控机床主轴-立柱系统热态特性分析与测试[J]. 光学精密工程, 2020, 28(3): 601-609. |
[4] | 张丽秀, 李超群, 李金鹏, 等. 高速高精度电主轴温升预测模型[J]. 机械工程学报, 2017, 53(23): 129-136. |
[5] | Naumann, A., Ruprecht, D. and Wensch, J. (2018) Toward Transient Finite Element Simulation of Thermal Deformation of Machine Tools in Real-Time. Computational Mechanics, 62, 929-942.
https://doi.org/10.1007/s00466-018-1540-6 |
[6] | Liu, Z., Chen, W., Li, D., et al. (2017) Theoretical Analysis and Experimental Study on Thermal Stability of High-Speed Motorized Spindle. Industrial Lubrication and Tribology, 31, 757-772.
https://doi.org/10.1108/ILT-04-2016-0091 |
[7] | 刘俊龙. 电主轴有限元模型热学参数辨识研究[D]: [硕士学位论文]. 武汉: 华中科技大学, 2015. |
[8] | 李郝林, 应杏娟. 数控机床主轴系统热误差温度测量点的最优化设计方法[J]. 中国机械工程, 2010, 21(7): 804-808. |
[9] | Fan, K. (2017) Research on the Machine Tool’s Temperature Spec-trum and Its Application in a Gear Form Grinding Machine. The International Journal of Advanced Manufacturing Technology, 90, 3841-3850.
https://doi.org/10.1007/s00170-016-9722-x |
[10] | Lundberg, G. and Palmgren, A. (1947) Dynamic Capacity of Rolling Bearings. Journal of Applied Mechanics, 71, 165-172. https://doi.org/10.1115/1.4009930 |
[11] | 王兰文, 盛选禹, 雒建斌. 高速角接触球轴承热特性和机械特性研究[J]. 机械设计, 2021, 38(1): 1-7. |
[12] | 宋男. 结合自旋生热的高速角接触球轴承温度场及热-力耦合分析[D]: [硕士学位论文]. 长春: 吉林大学, 2017. |