全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

经椎间孔椎间融合术与Coflex棘突间固定装置的生物力学仿真
Biomechanical Simulation on Transforaminal Lumbar Interbody Fusion and Interspinous Process Device Coflex

DOI: 10.12677/MOS.2022.112021, PP. 238-247

Keywords: 经椎间孔椎间融合术,棘突间动态固定系统,脊柱生物力学,有限元分析
Transforaminal Lumbar Interbody Fusion
, Spine Biomechanics, Interspinous Process Device, Finite Element Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文的目的是研究比较经椎间孔椎间融合术(transforaminal lumbar interbody fusion, TLIF)与腰椎棘突间Coflex动态固定装置的腰椎术后生物力学性能,为腰椎术式的临床应用与改进创新提供借鉴。基于医学影像数据建立人体腰骶椎L3-S1节段有限元模型,并结合临床手术方案建立TLIF与Coflex术后有限元模型,模拟腰骶椎的屈伸、侧弯与旋转运动,比较不同工况下的腰椎活动度与器械应力分布。仿真结果表明,TLIF与Coflex术式对责任节段屈伸活动度的限制作用相近,TLIF术式对责任节段侧弯运动的限制作用更强,对邻近节段活动度的影响更为显著;两类内固定器械的最大应力都发生在后伸运动下,且TLIF钉–棒系统的总体应力更高,在术后应尽量避免过度的后伸运动,降低器械的断裂风险。
This study aimed to investigate and compare the lumbar biomechanical characteristics after trans-foraminal lumbar interbody fusion (TLIF) and lumbar interspinous process device Coflex, and provided reference for clinical application and innovation of lumbar spine surgery. The finite element (FE) model of L3-S1 lumbosacral spine was constructed based on the medical image data, and the FE models of TLIF and Coflex were established based on the clinical guidelines. The range of motion (ROM) of the lumbar spine and stress distributions on instruments were observed in extension, flexion, lateral bending, and axial rotation motions. Results showed that the TLIF and Coflex had a similar influence on the lumbar flexion-extension ROM, and TLIF had a stronger effect on the lateral bending motion for surgical segment, and more significant effect on the ROM of the adjacent segments. Furthermore, the maximum stress of two fixation instruments both occurred in extension motion, and the overall stress of the TLIF nail-rod system was higher than Coflex, thus, the excessive extension motion should be avoided to minimize the risk of device fracture.

References

[1]  Haughton, V.M., Schmidt, T.A., Keele, K., et al. (2000) Flexibility of Lumbar Spinal Motion Segments Correlated to Type of Tears in the Annulus Fibrosus. Journal of Neurosurgery, 92, 81-86.
https://doi.org/10.3171/spi.2000.92.1.0081
[2]  Hoy, D., March, L., Brooks, P., et al. (2010) Measuring the Global Burden of Low Back Pain. Best Practice & Research Clinical Rheumatology, 24, 155-165.
https://doi.org/10.1016/j.berh.2009.11.002
[3]  Rajaee, S.S., et al. (2012) Spinal Fusion in the United States: Analysis of Trends from 1998 to 2008. Spine (Phila Pa 1976), 37, 67-76.
https://doi.org/10.1097/BRS.0b013e31820cccfb
[4]  Anandjiwala, J., Seo, J.Y., Ha, K.Y., et al. (2011) Adjacent Segment Degeneration after Instrumented Posterolateral Lumbar Fusion: A Prospective Cohort Study with a Minimum Five-Year Follow-Up. European Spine Journal, 20, 1951-1960.
https://doi.org/10.1007/s00586-011-1917-0
[5]  马敏, 吴德升, 黄宇峰, 等. 腰椎融合术后邻近节段退变的长期随访观察[J]. 同济大学学报: 医学版, 2014, 35(5): 51-55.
[6]  Jahng, T.A., Kim, Y.E. and Moon, K.Y. (2013) Comparison of the Biomechanical Effect of Pedi-cle-Based Dynamic Stabilization: A Study Using Finite Element Analysis. Spine Journal, 13, 85-94.
https://doi.org/10.1016/j.spinee.2012.11.014
[7]  Hashimoto, K., Aizawa, T., Kanno, H., et al. (2018) Adjacent Segment Degeneration after Fusion Spinal Surgery—A Systematic Review. International Orthopaedics, 43, 987-993.
https://doi.org/10.1007/s00264-018-4241-z
[8]  Puzzilli, F., Gazzeri, R., Galarza, M., et al. (2014) Interspinous Spacer Decompression (X-STOP) for Lumbar Spinal Stenosis and Degenerative Disk Disease: A Multicenter Study with a Minimum 3-Year Follow-Up. Clinical Neurology & Neurosurgery, 124, 166-174.
https://doi.org/10.1016/j.clineuro.2014.07.004
[9]  Nunley, P.D., Patel, V.V., Douglas, O., et al. (2017) Five-Year Durability of Stand-Alone Interspinous Process Decompression for Lumbar Spinal Stenosis. Clinical Interventions in Aging, 12, 1409.
https://doi.org/10.2147/CIA.S143503
[10]  Davis, R.J., Errico, T.J., Bae, H., et al. (2013) Decompression and Coflex Interlaminar Stabilization Compared with Decompression and Instrumented Spinal Fusion for Spinal Stenosis and Low-Grade Degenerative Spondylolisthesis: Two-Year Results from the Prospective, Randomized, Multicenter, Food and Drug A. Spine, 38, 1529-1539.
https://doi.org/10.1097/BRS.0b013e31829a6d0a
[11]  Belytschko, T., Kulak, R.F., Schultz, A.B., et al. (1974) Finite Element Stress Analysis of an Intervertebral Disc. Journal of Biomechanics, 7, 277-285.
https://doi.org/10.1016/0021-9290(74)90019-0
[12]  Hakim, N.S. and King, A.I. (1979) A Three Dimensional Finite Element Dynamic Response Analysis of a Vertebra with Experimental Verification. Journal of Biomechanics, 12, 277-285, 287-292.
https://doi.org/10.1016/0021-9290(79)90070-8
[13]  Goel, V.K., Kim, Y.E., Lim, T.H., et al. (1988) An Analytical Investigation of the Mechanics of Spinal Instrumentation. Spine, 13, 1003.
https://doi.org/10.1097/00007632-198809000-00007
[14]  颜文涛, 赵改平, 方新果, 等. 人体腰椎L4-5节段有限元建模及分析[J]. 生物医学工程学杂志, 2014, 31(3): 612-618.
[15]  Guo, L.-X. and Li, W.-J. (2020) Finite Element Modeling and Static/Dynamic Validation of Thoracolumbar-Pelvic Segment. Computer Methods in Biomechanics and Biomedical Engineering, 23, 69-80.
https://doi.org/10.1080/10255842.2019.1699543
[16]  Lafage, V., Gangnet, N., Senegas, J., et al. (2007) New Interspinous Implant Evaluation Using an in Vitro Biomechanical Study Combined with a Finite-Element Analysis. Spine, 32, 1706-1713.
https://doi.org/10.1097/BRS.0b013e3180b9f429
[17]  Erbulut, D.U., Zafarparandeh, I., Hassan, C.R., et al. (2015) Determination of the Biomechanical Effect of an Interspinous Process Device on Implanted and Adjacent Lumbar Spinal Segments Using a Hybrid Testing Protocol: A Finite-Element Study. Journal of Neurosurgery-Spine, 23, 200-208.
https://doi.org/10.3171/2014.12.SPINE14419
[18]  Chen, H.-C., Wu, J.-L., Huang, S.-C., et al. (2017) Biomechanical Evaluation of a Novel Pedicle Screw-Based Interspinous Spacer: A Finite Element Analysis. Medical Engineer-ing & Physics, 46, 27-32.
https://doi.org/10.1016/j.medengphy.2017.05.004
[19]  Du, C.F., Cai, X.Y., Gui, W., et al. (2021) Does Oblique Lumbar Interbody Fusion Promote Adjacent Degeneration in Degenerative Disc Disease: A Finite Element Analysis. Computers in Biology and Medicine, 128, Article ID: 104122.
https://doi.org/10.1016/j.compbiomed.2020.104122
[20]  Shen, H.K., Fogel, G.R., Zhu, J., et al. (2019) Biomechanical Analysis of Different Lumbar Interspinous Process Devices: A Finite Element Study. World Neurosurgery, 127, e1112-e1119.
https://doi.org/10.1016/j.wneu.2019.04.051
[21]  Edwards, W.T., Zheng, Y.G., Ferrara, L.A., et al. (2001) Structural Features and Thickness of the Vertebral Cortex in the Thoracolumbar Spine. Spine, 26, 218-225.
https://doi.org/10.1097/00007632-200101150-00019
[22]  Goel, V.K., Monroe, B.T., Gilbertson, L.G., et al. (1995) Interlaminar Shear Stresses and Laminae Separation in a Disc. Finite Element Analysis of the L3-L4 Motion Segment Subjected to Axial Compressive Loads. Spine, 20, 689-698.
https://doi.org/10.1097/00007632-199503150-00010
[23]  Lu, Y.M., Hutton, W.C. and Gharpuray, V.M. (1996) Can Variations in Intervertebral Disc Height Affect the Mechanical Function of the Disc? Spine, 21, 2208-2217.
https://doi.org/10.1097/00007632-199610010-00006
[24]  颜文涛, 赵改平, 方新果, 等. 经椎间孔腰椎椎间融合术式模型的生物力学研究[J]. 生物医学工程学杂志, 2015, 32(1): 67-72.
[25]  Lo, C.-C., Tsai, K.-J., Zhong, Z.-C., et al. (2011) Biomechanical Differences of Coflex-F and Pedicle Screw Fixation Combined with TLIF or ALIF-a Finite Element Study. Computer Methods in Biomechanics and Biomedical Engineering, 14, 947-956.
https://doi.org/10.1080/10255842.2010.501762
[26]  Renner, S.M., Natarajan, R.N., Patwardhan, A.G., et al. (2007) Novel Model to Analyze the Effect of a Large Compressive Follower Pre-Load on Range of Motions in a Lumbar Spine. Journal of Biomechanics, 40, 1326-1332.
https://doi.org/10.1016/j.jbiomech.2006.05.019
[27]  Zhang, C., Shi, J., Chang, M., et al. (2021) Does Osteoporosis Affect the Adjacent Segments Following Anterior Lumbar Interbody Fusion? A Finite Element Study. World Neurosurgery, 146, e739-e746.
https://doi.org/10.1016/j.wneu.2020.11.005
[28]  Lee, J.C. and Choi, S.W. (2015) Adjacent Segment Pathology after Lumbar Spinal Fusion. Asian Spine Journal, 9, 807-817.
https://doi.org/10.4184/asj.2015.9.5.807
[29]  Hikata, T., Kamata, M. and Furukawa, M. (2012) Risk Factors for Adjacent Segment Disease after Posterior Lumbar Interbody Fusion and Efficacy of Simultaneous Decompression Surgery for Symptomatic Adjacent Segment Disease. Journal of Spinal Disorders & Techniques, 27, 70.
https://doi.org/10.1097/BSD.0b013e31824e5292
[30]  陈肇辉. 腰椎棘突间撑开装置的三维有限元分析及临床应用研究[D]: [硕士学位论文]. 上海: 第二军医大学, 2010,
[31]  张文, 王兰, 施勤, 等. 腰椎行椎间孔入路椎间融合术固定的有限元分析[J]. 医用生物力学, 2014, 29(5): 405-410.
[32]  谷雪莲, 蔡方舟, 胡方遒, 等. Coflex和X-STOP治疗腰椎管狭窄的生物力学性能[J]. 医用生物力学, 2015, 30(4): 318-325.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133