|
盐模板法制备多孔碳材料的研究进展
|
Abstract:
多孔碳材料因其稳定性高、成本低、孔隙率可调控等优点成为了吸附剂领域的研究热点。多孔碳的孔结构的排列主要取决于其制备方式,因此找到一个制备过程绿色无污染且原材料成本低的制备方式是十分重要的。本文中主要总结了各种盐模板制备多孔碳材料的方法的优点并列举了目前人们使用盐模板制备多孔碳材料的案例。
Porous carbon material has become a hot research topic in the field of adsorbents because of its high stability, low cost and controllable porosity. The arrangement of porous carbon hole structure mainly depends on its preparation method, so it is very important to find a preparation process which is environmentally friendly and easy to operate, and the low raw material cost. In this paper, the advantages of various salt templates for the preparation of porous carbon materials are summarized and the cases of people using salt templates to prepare porous carbon materials are listed.
[1] | Jin, S.S., Nan, F.Y., Hong, M.C., et al. (2019) Salt Template Synthesis of Nitrogen and Sulfur Co-Doped Porous Carbons as CO2 Adsorbents. ACS Sustainable Chemistry & Engineering, 7, 19513-19521.
https://doi.org/10.1021/acssuschemeng.9b04574 |
[2] | Luo, L., Luo, L.C., Deng, J.P., et al. (2021) High Performance Supercapacitor Electrodes Based on B/N Co-Doped Biomass Porous Carbon Materials by KOH Activation and Hydrothermal Treatment. International Journal of Hydrogen Energy, 46, 31927-31937. https://doi.org/10.1016/j.ijhydene.2021.06.211 |
[3] | Cui, Y.P., Feng, W.T., Wang, D.D., et al. (2021) Water-Soluble Salt Template-Assisted Anchor of Hollow FeS2 Nanoparticle inside 3D Carbon Skeleton to Achieve Fast Potassium-Ion Storage. Advanced Energy Materials, 11, 210343.
https://doi.org/10.1002/aenm.202101343 |
[4] | 李臻, 刘洁, 肖惠宁, 等. 硬模板法合成介孔材料及其铬吸附性能研究[J]. 广州化工, 2016, 44(18): 105-109. |
[5] | Zhang, F., Liu, H.C., Wu, Z.F., et al. (2021) Polyacrylamide Gel-Derived Nitrogen-Doped Carbon Foam Yields High Performance in Supercapacitor Electrodes. ACS Applied Energy Materials, 4, 6719-6729.
https://doi.org/10.1021/acsaem.1c00777 |
[6] | Pan, D., Li, Q.M., Zhang, W., et al. (2021) Highly Thermal Conductive Epoxy Nanocomposites Filled with 3D BN/C Spatial Network Prepared by Salt Template Assisted Method. Composites Part B, 209, Article ID: 108609.
https://doi.org/10.1016/j.compositesb.2021.108609 |
[7] | 米红宇, 张校刚, 吕新美, 等. 种子模板法制备镍盐掺杂聚吡咯纳米纤维及其电化学电容性质[J]. 高分子材料科学与工程, 2008, 24(3): 155-158. |
[8] | 蔡文波, 李桂菊, 刘笑研, 等. 软模板法碳电极制备及在废水脱盐中的应用[J]. 环境工程学报, 2015, 9(12): 5927-5933. |
[9] | Sun, J., Gao, L., Hyungsun, K., et al. (2012) Effect of Temperature and Carbon Contents on the Synthesis of β-SiC from Silicon Sludge by Direct Carbonization Method. Materials Science Forum, 724, 45-48.
https://doi.org/10.4028/www.scientific.net/MSF.724.45 |
[10] | 吴有龙, 徐嘉龙, 马中青, 等. KOH活化法制备气化稻壳活性炭及其吸附性能[J]. 生物质化学工程, 2021, 55(1): 31-38. |
[11] | 程昊, 樊静静, 刘永逸, 等. 硬模板法制备氮掺杂有序介孔碳修饰电极检测盐酸奈福泮[J]. 分析测试学报, 2021, 40(7): 1049-1054. |
[12] | 黄锦波, 邵灵达, 祝成炎, 等. 活性炭纤维的制备及其应用进展[J]. 棉纺织技术, 2020, 48(10): 11-14. |
[13] | Sun, Z.W., Liang, J.S., Duan, X.H., et al. (2019) Preparation and Characterization of Shiitake Mushroom-Based Activated Carbon with High Adsorption Capacity. Arabian Journal for Science and Engineering, 44, 5443-5456.
https://doi.org/10.1007/s13369-019-03746-5 |
[14] | 修东超, 高丽娟, 杨国明, 等. 水蒸汽活化法制备外墙保温板残料活性炭[J]. 化学工程与装备, 2016(4): 13-14. |
[15] | 苌柳娜. 化学活化法制备活性炭/纳米碳掺杂材料的研究[D]: [硕士学位论文]. 北京: 北京化工大学, 2012. |
[16] | Chen, X.L., Lim, J.S.K., Yan, W.L., et al. (2020) Salt Template Assisted BN Scaffold Fabrication toward Highly Thermally Conductive Epoxy Composites. ACS Applied Materials & Interfaces, 12, 16987-16996.
https://doi.org/10.1021/acsami.0c04882 |
[17] | Elmaani, A.A., Tomic, N., Radovic, I., et al. (2019) Salt Template Zirconia Reinforcing Particles as Possible Reinforcement for PMMA Matrix Composite. Advanced Composites Letters, 28, 1-7.
https://doi.org/10.1177/0963693519879696 |
[18] | Chen, A.L., Yi, Q.F., Sheng, K., et al. (2021) Mesoporous N-P Codoped Carbon Nanosheets as Superior Cathodic Catalysts of Neutral Metal-Air Batteries. Langmuir, 37, 12616-12628. https://doi.org/10.1021/acs.langmuir.1c01947 |
[19] | He, H.Z., Zhang, Y., Zhang, W.Q., et al. (2021) Dual Metal-Loaded Porous Carbon Materials Derived from Silk Fibroin as Bifunctional Electrocatalysts for Hydrogen Evolution Reaction and Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 13, 30678-30692. https://doi.org/10.1021/acsami.1c07058 |
[20] | Meng, Q.D., Yan, S.M., Cen, W., et al. (2018) A Simple Synthesis of Nitrogen-Sulfur Co-Doped Porous Carbon Using Ionic Liquids as Dopant for High Rate Performance Li-Ion Batteries. Journal of Electroanalytical Chemistry, 834, 17-25. https://doi.org/10.1016/j.jelechem.2018.12.042 |
[21] | 吴博文, 黎燕荣. 熔融盐模板法制备燃料电池氧还原催化剂的研究[J]. 山东化工, 2018, 47(5): 53-54. |
[22] | Chong, L., Wei, L., Ya, Q.D., et al. (2017) A Dual-Function Na2SO4 Template Directed Formation of Cathode Materials with a High Content of Sulfur Nanodots for Lithium-Sulfur Batteries. Small, 13, Article ID: 1700358.
https://doi.org/10.1002/smll.201700358 |
[23] | Fu, Y.H., Xu, F.C., Weng, D.H., et al. (2019) Superhydrophobic Foams with Chemical- and Mechanical-Damage- Healing Abilities Enabled by Self-Healing Polymers. ACS Applied Materials & Interfaces, 11, 37285-37294.
https://doi.org/10.1021/acsami.9b11858 |
[24] | Yan, M.G., Xiong, Q.M., Huang, J.T., et al. (2021) Molten Salt Synthesis of Titanium Carbide Using Different Carbon Sources as Templates. Ceramics International, 47, 17589-17596. https://doi.org/10.1016/j.ceramint.2021.03.077 |
[25] | Nikolai, P.P., Kallioinen, M., et al. (2021) Synergy between Alkali Activation and a Salt Template in Superactive Carbon Production from Lignin. Nanotechnology, 32, Article ID: 085605. https://doi.org/10.1088/1361-6528/abc9eb |
[26] | Zhang, S., Tian, K., Cheng, B.H., et al. (2017) Preparation of N-Doped Supercapacitor Materials by Integrated Salt Templating and Silicon Hard Templating by Pyrolysis of Biomass Wastes. ACS Sustainable Chemistry & Engineering, 5, 6682-6691. https://doi.org/10.1021/acssuschemeng.7b00920 |
[27] | 刘家冉, 郭思勤, 赵天畅, 等. 木质素高盐模板碳气凝胶制备及其电化学应用[J]. 北京林业大学学报, 2020, 42(6): 142-148. |
[28] | Wu, X.S., Su, R.H., Pei, B.B., et al. (2019) Pore Structure Control of Porous Carbon via the Synergistic Effect of Boric Acid and Divalent Metal Iron Salt. Materials Letters, 255, 827-839. https://doi.org/10.1016/j.matlet.2019.126539 |
[29] | 谢亚桥, 赵佳欣, 李杰兰, 等. 氯化钠模板诱导木质素基多孔炭的制备及其超级电容器性能[J]. 应用化学, 2019, 36(4): 482-488. |
[30] | Li, J.Z., Luo, S.H., Ding, X.Y., et al. (2018) NaCl-Template Assisted Synthesis of 3D Honeycomb-Like LiMnPO4. ACS Sustainable Chemistry & Engineering, 6, 16683-16691. https://doi.org/10.1021/acssuschemeng.8b03935 |
[31] | Shi, J.S., Yan, N.F. and Cui, H.M. (2019) Salt Template Synthesis of Nitrogen and Sulfur Co-Doped Porous Carbons as CO2 Adsorbents. ACS Sustainable Chemistry & Engineering, 7, 19513-19521.
https://doi.org/10.1021/acssuschemeng.9b04574 |
[32] | Qiu, D., Cao, T.F., Zhang, J., et al. (2019) Precise Carbon Structure Control by Salt Template for High Performance Sodium-Ion Storage. Journal of Energy Chemistry, 31, 101-106. https://doi.org/10.1016/j.jechem.2018.05.014 |
[33] | Wang, P.Y., Zhang, G.H., Chen, W.J., et al. (2020) Molten Salt Template Synthesis of Hierarchical Porous Nitrogen- Containing Activated Carbon Derived from Chitosan for CO2 Capture. ACS Omega, 5, 23460-23467.
https://doi.org/10.1021/acsomega.0c03497 |
[34] | 焦帅, 杨磊, 武婷婷, 等. 混合盐模板法制备超级电容器用氮掺杂分级多孔碳纳米片[J]. 化工学报, 2021, 72(5): 2869-2877. |
[35] | Zhang, W., Lin, M.H., Cheng, R.R., et al. (2021) Molten Metal Chloride Salt Template Synthesis of N/S Co-Doped Porous Carbon Nanosheets for Supercapacitors C with High Rate and Stable Performance as Lithium-Ion Battery Cathodes. Diamond and Related Materials, 113, Article ID: 108278. https://doi.org/10.1016/j.diamond.2021.108278 |
[36] | Noel, D., Guillermo, A., Antonio, B., et al. (2019) Sustainable Salt Template-Assisted Chemical Activation for the Production of Porous Carbons with Enhanced Power Handling Ability in Supercapacitors. Batteries & Supercaps, 2, 701-711. https://doi.org/10.1002/batt.201900037 |
[37] | Prauchner, M.J., Sapag, K. and Rodríguez-Reinoso, F. (2016) Tailoring Biomass-Based Activated Carbon for CH4 Storage by Combining Chemical Activation with H3PO4 or ZnCl2 and Physical Activation with CO2. Carbon, 110, 138-147. https://doi.org/10.1016/j.carbon.2016.08.092 |