|
应激颗粒,FUS相关肌萎缩侧索硬化症的治疗新靶点
|
Abstract:
肌萎缩侧索硬化症(amyotrophic lateral sclerosis, ALS)是一种引起上、下运动神经元退化的神经退行性疾病,其病理学的确切机制尚不清楚。与ALS相关的病理过程包括线粒体功能障碍、蛋白质稳态失衡和RNA代谢缺陷。在ALS患者退化的运动神经元中FUS蛋白形成了不溶性聚集体,而ALS相关的FUS突变加速了该过程。近年来很多研究表明,应激颗粒(stress granules, SGs)在FUS突变引起蛋白病变并驱动ALS进展的过程中发挥了重要作用。SGs是真核细胞响应压力形成的一种动态无膜细胞器,主要包含暂停翻译的mRNA和RNA结合蛋白。SGs通过招募mRNA调控了翻译,通过招募信号分子调控了信号通路,从而促进了细胞在压力下的适应和存活。然而,多种慢性压力诱导的SGs具有致病作用。SGs被认为在很多神经退行性疾病病理性蛋白质聚集体的产生过程中发挥了“成核种子”的作用,包括FUS突变引起的蛋白质聚集体。本文主要就SGs在FUS相关ALS病理发生中的作用及其靶向治疗策略做一简要概述和讨论。
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease that causes degeneration of upper and lower motor neurons. The exact mechanisms underlying the pathogenesis of ALS remain elusive. Many pathological processes are associated with ALS, including mitochondrial dysfunction, loss of proteostasis and defect in RNA metabolism. FUS protein develops insoluble aggregation in degenerated motor neurons of ALS patients, which is accelerated by ALS-linked FUS mutations. Recently, many studies have shown that stress granules (SGs) play an important role in proteinopathy of mutated FUS that drives ALS progression. SGs are stress-induced dynamic membraneless organelle in eukaryotic cells, containing translation-stalled mRNAs and RNA binding proteins. SGs regulate mRNA translation and signaling pathways by recruitment of mRNAs and signaling proteins respectively, leading to stress adaption and cell survival. However, SGs induced by some chronic stress exert pathological outcomes and are believed to act as a seed for the formation of pathological protein aggregation in many neurodegenerative diseases, including FUS mutations-induced protein aggregation. Here we briefly summarized and discussed the role of SGs in the pathogenesis of FUS-re- lated ALS and the therapeutic strategy targeting SGs.
[1] | Dudman, J. and Qi, X. (2020) Stress Granule Dysregulation in Amyotrophic Lateral Sclerosis. Frontiers in Cellular Neuroscience, 14, Article ID: 598517. https://doi.org/10.3389/fncel.2020.598517 |
[2] | Jaiswal, M.K. (2019) Riluzole and Edaravone: A Tale of Two Amyotrophic Lateral Sclerosis Drugs. Medicinal Research Reviews, 39, 733-748. https://doi.org/10.1002/med.21528 |
[3] | Dervishi, I., Gozutok, O., Murnan, K., Gautam, M., Heller, D., Bigio, E. and Ozdinler, P.H. (2018) Protein-Protein Interactions Reveal Key Canonical Pathways, Upstream Regulators, Interactome Domains, and Novel Targets in ALS. Scientific Reports, 8, Article ID: 14732. https://doi.org/10.1038/s41598-018-32902-4 |
[4] | Masrori, P. and van Damme, P. (2020) Amyotrophic Lateral Sclerosis: A Clinical Review. European Journal of Neurology, 27, 1918-2199. https://doi.org/10.1111/ene.14393 |
[5] | Shi, Y., Lin, S., Staats, K.A., Li, Y., Chang, W.H., Hung, S.T., et al. (2018) Haploinsufficiency Leads to Neurodegeneration in C9ORF72 ALS/FTD Human Induced Motor Neurons. Nature Medicine, 24, 313-325.
https://doi.org/10.1038/nm.4490 |
[6] | Song, W., Song, Y., Kincaid, B., Bossy, B. and Bossy-Wetzel, E. (2013) Mutant SOD1G93A Triggers Mitochondrial Fragmentation in Spinal Cord Motor Neurons: Neuroprotection by SIRT3 and PGC-1α. Neurobiology of Disease, 51, 72-81.
https://doi.org/10.1016/j.nbd.2012.07.004 |
[7] | Bravo-Hernandez, M., Tadokoro, T., Navarro, M.R., Platoshyn, O., Kobayashi, Y., Marsala, S., et al. (2020) Spinal Subpial Delivery of AAV9 Enables Widespread Gene Silencing and Blocks Motoneuron Degeneration in ALS. Nature Medicine, 26, 118-130. https://doi.org/10.1038/s41591-019-0674-1 |
[8] | Brown, R.H.J. and Al Chalabi, A. (2017) Amyotrophic Lateral Sclerosis. The New England Journal of Medicine, 377, Article No. 1602. https://doi.org/10.1056/NEJMc1710379 |
[9] | Prasad, A., Bharathi, V., Sivalingam, V., Girdhar, A. and Patel, B.K. (2019) Molecular Mechanisms of TDP-43 Misfolding and Pathology in Amyotrophic Lateral Sclerosis. Frontiers in Molecular Neuroscience, 12, Article No. 25.
https://doi.org/10.3389/fnmol.2019.00025 |
[10] | Deng, H., Gao, K. and Jankovic, J. (2014) The Role of FUS Gene Variants in Neurodegenerative Diseases. Nature Reviews Neurology, 10, 337-348. https://doi.org/10.1038/nrneurol.2014.78 |
[11] | Sharma, A., Lyashchenko, A.K., Lu, L., Nasrabady, S.E., Elmaleh, M., Mendelsohn, M., et al. (2016) ALS-Associated Mutant FUS Induces Selective Motor Neuron Degeneration through Toxic Gain of Function. Nature Communications, 7, Article No. 10465. https://doi.org/10.1038/ncomms10465 |
[12] | Tyzack, G.E., Luisier, R., Taha, D.M., Neeves, J., Modic, M., Mitchell, J.S., et al. (2019) Widespread FUS Mislocalization Is a Molecular Hallmark of Amyotrophic Lateral Sclerosis. Brain, 142, 2572-2580. https://doi.org/10.1093/brain/awz217 |
[13] | Harley, J., Hagemann, C., Serio, A. and Patani, R. (2020) FUS Is Lost from Nuclei and Gained in Neurites of Motor Neurons in a Human Stem Cell Model of VCP-Related ALS. Brain, 143, e103. https://doi.org/10.1093/brain/awaa339 |
[14] | Crozat, A., Aman, P., Mandahl, N. and Ron, D. (1993) Fusion of CHOP to a Novel RNA-Binding Protein in Human Myxoid Liposarcoma. Nature, 363, 640-644. https://doi.org/10.1038/363640a0 |
[15] | Kato, M., Han, T.W., Xie, S., Shi, K., Du, X., Wu, L.C., et al. (2012) Cell-Free Formation of RNA Granules: Low Complexity Sequence Domains form Dynamic Fibers within Hydrogels. Cell, 149, 753-767.
https://doi.org/10.1016/j.cell.2012.04.017 |
[16] | Loughlin, F.E., Lukavsky, P.J., Kazeeva, T., Reber, S., Hock, E.M., Colombo, M., et al. (2019) The Solution Structure of FUS Bound to RNA Reveals a Bipartite Mode of RNA Recognition with Both Sequence and Shape Specificity. Molecular cell, 73, 490-504.e6. https://doi.org/10.1016/j.molcel.2018.11.012 |
[17] | Dormann, D., Rodde, R., Edbaue, R.D., Bentmann, E., Fischer, I., Hruscha, A., et al. (2010) ALS-Associated Fused in Sarcoma (FUS) Mutations Disrupt Trans portin-Mediated Nuclear Import. EMBO Journal, 29, 2841-2757.
https://doi.org/10.1038/emboj.2010.143 |
[18] | Kapeli, K., Pratt, G.A., Vu, A.Q., Hutt, K.R., Martinez, F.J., Sundararaman, B., et al. (2016) Distinct and Shared Functions of ALS-Associated Proteins TDP-43, FUS and TAF15 Revealed by Multisystem Analyses. Nature Communications, 7, Article No. 12143. https://doi.org/10.1038/ncomms12143 |
[19] | Sama, R.R., Ward, C.L. and Bosco, D.A. (2014) Functions of FUS/TLS from DNA Repair to Stress Response: Implications for ALS. ASN Neuro, 6, 1-18. https://doi.org/10.1177/1759091414544472 |
[20] | Kamelgarn, M., Chen, J., Kuang, L., Jin, H., Kasarskis, E.J. and Zhu, H. (2018) ALS Mutations of FUS Suppress Protein Translation and Disrupt the Regulation of Nonsense-Mediated Decay. Proceedings of the National Academy of Sciences of the United States of America, 115, E11904-E13. https://doi.org/10.1073/pnas.1810413115 |
[21] | Vandoorne, T., Veys, K., Guo, W., Sicart, A., Vints, K., Swijsen, A., et al. (2019) Differentiation but Not ALS Mutations in FUS Rewires Motor Neuron Metabolism. Nature Communications, 10, Article No. 4147.
https://doi.org/10.1038/s41467-019-12099-4 |
[22] | Deng, J., Wang, P., Chen, X., Cheng, H., Liu, J., Fushimi, K., et al. (2018) FUS Interacts with ATP Synthase Beta Subunit and Induces Mitochondrial Unfolded Protein Response in Cellular and Animal Models. Proceedings of the National Academy of Sciences of the United States of America, 115, E9678-E9686.
https://doi.org/10.1073/pnas.1806655115 |
[23] | Sabatelli, M., Moncada, A., Conte, A., Lattante, S., Marangi, G., Luigetti, M., et al. (2013) Mutations in the 3’ Untranslated Region of FUS Causing FUS Overexpression Are Associated with Amyotrophic Lateral Sclerosis. Human Molecular Genetics, 22, 4748-4755. https://doi.org/10.1093/hmg/ddt328 |
[24] | Vance, C., Scotter, E.L., Nishimura, A.L., Troakes, C., Mitchell, J.C., Kathe, C., et al. (2013) ALS Mutant FUS Disrupts Nuclear Localization and Sequesters Wild-Type FUS within Cytoplasmic Stress Granules. Human Molecular Genetics, 22, 2676-88. https://doi.org/10.1093/hmg/ddt117 |
[25] | An, H., Skelt, L., Notaro, A., Highley, J.R., Fox, A.H., La, B.V., et al. (2019) ALS-Linked FUS Mutations Confer Loss and Gain of Function in the Nucleus by Promoting Excessive Formation of Dysfunctional Paraspeckles. Acta Neuropatho- logica Communications, 7, Article No. 7. https://doi.org/10.1186/s40478-019-0658-x |
[26] | Don, E.K., Maschirow, A., Radford, R.A.W., et al. (2021) In Vivo Validation of Bimolecular Fluorescence Complementation (BiFC) to Investigate Aggregate Formation in Amyotrophic Lateral Sclerosis (ALS). Molecular Neurobiology, 58, 2061-2074. https://doi.org/10.1007/s12035-020-02238-0 |
[27] | Stronati, E., Biagioni, S., Fiore, M., Giorgi, M., Poiana, G., Toselli, C., et al. (2021) Wild-Type and Mutant FUS Expression Reduce Proliferation and Neuronal Differentiation Properties of Neural Stem Progenitor Cells. International Journal of Molecular Sciences, 22, Article No.7566. https://doi.org/10.3390/ijms22147566 |
[28] | Ryan, V.H. and Fawzi, N.L. (2019) Physiological, Pathological, and Targetable Membraneless Organelles in Neurons. Trends in Neurosciences, 42, 693-708. https://doi.org/10.1016/j.tins.2019.08.005 |
[29] | Advani, V.M. and Ivanov, P. (2020) Stress Granule Subtypes: An Emerging Link to Neurodegeneration. Cellular and Molecular Life Sciences, 77, 4827-4845. https://doi.org/10.1007/s00018-020-03565-0 |
[30] | Protter, D.S.W. and Parker, R. (2016) Principles and Properties of Stress Granules. Trends in Cell Biology, 26, 668-679.
https://doi.org/10.1016/j.tcb.2016.05.004 |
[31] | Jain, S., Wheeler, J.R., Walters, R.W., Agrawal, A., Barsic, A. and Parker, R. (2016) ATPase-Modulated Stress Granules Contain a Diverse Proteome and Substructure. Cell, 164, 487-498. https://doi.org/10.1016/j.cell.2015.12.038 |
[32] | Panas, M.D., Ivanov, P. and Anderson, P. (2016) Mechanistic Insights into Mammalian Stress Granule Dynamics. The Journal of Cell Biology, 215, 313-323. https://doi.org/10.1083/jcb.201609081 |
[33] | Tsai, W.C., Gayatri, S., Reineke, L.C., Sbardella, G., Bedford, M.T. and Lloyd, R.E. (2016) Arginine Demethylation of G3BP1 Promotes Stress Granule Assembly. The Journal of Biological Chemistry, 291, 22671-22685.
https://doi.org/10.1074/jbc.M116.739573 |
[34] | Omer, A., Patel, D., Moran, J.L., Lian, X.J., Di, M.S. and Gallouzi, I.E. (2020) Autophagy and Heat-Shock Response Impair Stress Granule Assembly during Cellular Senescence. Mechanisms of Ageing and Development, 192, Article ID: 111382.
https://doi.org/10.1016/j.mad.2020.111382 |
[35] | Janssens, J., Wils, H., Kleinberger, G., Joris, G., Cuijt, I., Ceuterick-de, G.C., et al. (2013) Overexpression of ALS-Associated p.M337V Human TDP-43 in Mice Worsens Disease Features Compared to Wild-Type Human TDP-43 Mice. Molecular Neurobiology, 48, 22-35. https://doi.org/10.1007/s12035-013-8427-5 |
[36] | Hensel, N. and Claus, P. (2018) The Actin Cytoskeleton in SMA and ALS: How Does It Contribute to Motoneuron Degeneration? Neuroscientist, 24, 54-72. https://doi.org/10.1177/1073858417705059 |
[37] | Lopez-Erauskin, J., Tadokoro, T., Baughn, M.W., Myers, B., McAlonis-Downes, M., Chillon-Marinas, C., et al. (2018) ALS/FTD-Linked Mutation in FUS Suppresses Intra-Axonal Protein Synthesis and Drives Disease without Nuclear Loss- of-Function of FUS. Neuron, 100, 816-830.e7. https://doi.org/10.1016/j.neuron.2018.09.044 |
[38] | Groen, E.J., Fumoto, K., Blokhuis, A.M., Engelen-Lee, J., Zhou, Y., Heuvel, D.M., et al. (2013) ALS-Associated Mutations in FUS Disrupt the Axonal Distribution and Function of SMN. Human Molecular Genetics, 22, 3690-3704.
https://doi.org/10.1093/hmg/ddt222 |
[39] | Lin, Y.C., Kumar, M.S., Ramesh, N., Anderson, E.N., Nguyen, A.T., Kim, B., et al. (2021) Interactions between ALS-linked FUS and Nucleoporins Are Associated with Defects in the Nucleocytoplasmic Transport Pathway. Nature Neuroscience, 24, 1077-1088. https://doi.org/10.1038/s41593-021-00859-9 |
[40] | Jun, M.H., Ryu, H.H., Jun, Y.W., Liu, T., Li, Y., Lim, C.S., et al. (2017) Sequestration of PRMT1 and Nd1-L mRNA into ALS-linked FUS Mutant R521C-Positive Aggregates Contributes to Neurite Degeneration upon Oxidative Stress. Scientific Reports, 7, Article No. 40474. https://doi.org/10.1038/srep40474 |
[41] | Tsai, Y.L., Coady, T.H., Lu, L., Zheng, D., Alland, I., Tian, B., et al. (2020) ALS/FTD-Associated Protein FUS Induces Mitochondrial Dysfunction by Preferentially Sequestering Respiratory Chain Complex mRNAs. Genes & Development, 34, 785-805. https://doi.org/10.1101/gad.335836.119 |
[42] | Jutzi, D., Campagne, S., Schmidt, R., Reber, S., Mechtersheimer, J., Gypas, F., et al. (2020) Aberrant Interaction of FUS with the U1 snRNA Provides a Molecular Mechanism of FUS Induced Amyotrophic Lateral Sclerosis. Nature Communications, 11, Article No. 6341. https://doi.org/10.1038/s41467-020-20191-3 |
[43] | Steyaert, J., Scheveneels, W., Vanneste, J., Van, D.P., Robberecht, W., Callaerts, P., et al. (2018) FUS-Induced Neurotoxicity in Drosophila Is Prevented by Downregulating Nucleocytoplasmic Transport Proteins. Human Molecular Genetics, 27, 4103-4116. https://doi.org/10.1093/hmg/ddy303 |
[44] | Reineke, L.C. and Neilson, J.R. (2019) Differences between Acute and Chronic Stress Granules, and How These Differences May Impact Function in Human Disease. Biochemical Pharmacology, 162, 123-131.
https://doi.org/10.1016/j.bcp.2018.10.009 |
[45] | Wolozin, B. and Ivanov, P. (2019) Stress Granules and Neurodegeneration. Nature Reviews Neuroscience, 20, 649-666.
https://doi.org/10.1038/s41583-019-0222-5 |
[46] | Marrone, L., Drexler, H.C.A., Wang, J., Tripathi, P., Distler, T., Heisterkamp, P., et al. (2019) FUS Pathology in ALS is Linked to Alterations in Multiple ALS-Associated Proteins and Rescued by Drugs Stimulating Autophagy. Acta Neuro- pathologica, 138, 67-84. https://doi.org/10.1007/s00401-019-01998-x |
[47] | Wang, H., Guo, W., Mitra, J., Hegde, P.M., Vandoorne, T., Eckelmann, B.J., et al. (2018) Mutant FUS Causes DNA Ligation Defects to Inhibit Oxidative Damage Repair in Amyotrophic Lateral Sclerosis. Nature Communications, 9, Article No. 3683. https://doi.org/10.1038/s41467-018-06111-6 |
[48] | Kia, A., Mcavoy, K., Krishnamurthy, K., Trotti, D. and Pasinelli, P. (2018) Astrocytes Expressing ALS-Linked Mutant FUS Induce Motor Neuron Death through Release of Tumor Necrosis Factor-Alpha. Glia, 66, 1016-1033.
https://doi.org/10.1002/glia.23298 |
[49] | Lenzi, J., De Santis, R., De Turris, V., Morlando, M., Laneve, P., Calvo, A., et al. (2015) ALS Mutant FUS Proteins Are Recruited into Stress Granules in Induced Pluripotent Stem Cell-Derived Motoneurons. Disease Models & Mechanisms, 8, 755-766. https://doi.org/10.1242/dmm.020099 |
[50] | Zhang, X., Wang, F., Hu, Y., Chen, R., Meng, D., Guo, L., et al. (2020) In Vivo Stress Granule Misprocessing Evidenced in a FUS Knock-In ALS Mouse Model. Brain, 143, 1350-1367. https://doi.org/10.1093/brain/awaa076 |
[51] | De Santis, R., Alfano, V., De Turris, V., Colantoni, A., Santini, L., Garone, M.G., et al. (2019) Mutant FUS and ELAVL4 (HuD) Aberrant Crosstalk in Amyotrophic Lateral Sclerosis. Cell Reports, 27, 3818-3831.e5.
https://doi.org/10.1016/j.celrep.2019.05.085 |
[52] | Ryu, H.H., Jun, M.H., Min, K.J., Jang, D.J., Lee, Y.S., Kim, H.K., et al. (2014) Autophagy Regulates Amyotrophic Lateral Sclerosis-Linked Fused in Sarcoma-Positive Stress Granules in Neurons. Neurobiology of Aging, 35, 2822-2831.
https://doi.org/10.1016/j.neurobiolaging.2014.07.026 |
[53] | Zhang, T., Jiang, X., Xu, M., Wang, H., Sang, X., Qin, M., et al. (2018) Sleep and Circadian Abnormalities Precede Cognitive Deficits in R521C FUS Knockin Rats. Neurobiology of Aging, 72, 159-170.
https://doi.org/10.1016/j.neurobiolaging.2018.08.025 |
[54] | Guo, W., Naujock, M., Fumagalli, L., Vandoorne, T., Baatsen, P., Boon, R., et al. (2017) HDAC6 Inhibition Reverses Axonal Transport Defects in Motor Neurons Derived from FUS-ALS Patients. Nature Communications, 8, Article No. 861. https://doi.org/10.1038/s41467-017-00911-y |
[55] | Guo, L., Kim, H.J., Wang, H., Monaghan, J., Freyermuth, F., Sung, J.C., et al. (2018) Nuclear-Import Receptors Reverse Aberrant Phase Transitions of RNA-Binding Proteins with Prion-Like Domains. Cell, 173, 677-692.e20.
https://doi.org/10.1016/j.cell.2018.03.002 |
[56] | Hofweber, M., Hutten, S., Bourgeois, B., Spreitzer, E., Niedner-Boblenz, A., Schifferer, M., et al. (2018) Phase Separation of FUS Is Suppressed by Its Nuclear Import Receptor and Arginine Methylation. Cell, 173, 706-719.e13.
https://doi.org/10.1016/j.cell.2018.03.004 |
[57] | Naumann, M., Pal, A., Goswami, A., Lojewski, X., Japtok, J., Vehlow, A., et al. (2018) Impaired DNA Damage Response Signaling by FUS-NLS Mutations Leads to Neurodegeneration and FUS Aggregate Formation. Nature Communications, 9, Article No. 335. https://doi.org/10.1038/s41467-017-02299-1 |
[58] | Lo Bello, M., Di Fini, F., Notaro, A., Spataro, R., Conforti, F.L. and La, B.V. (2017) ALS-Related Mutant FUS Protein Is Mislocalized to Cytoplasm and Is Recruited into Stress Granules of Fibroblasts from Asymptomatic FUS P525L Mutation Carriers. Neurodegenerative Diseases, 17, 292-303. https://doi.org/10.1159/000480085 |
[59] | Birsa, N., Ule, A.M, Garone, M.G., Tsang, B., Mattedi, F., Chong, P.A., et al. (2021) FUS-ALS Mutants Alter FMRP Phase Separation Equilibrium and Impair Protein Translation. Science Advances, 7, Article No. eabf8660.
https://doi.org/10.1126/sciadv.abf8660 |
[60] | Salam, S., Tacconelli, S., Smith, B.N., Mitchell, J.C., Glennon, E., Nikolaou, N., et al. (2021) Identification of a Novel Interaction of FUS and Syntaphilin May Explain Synaptic and Mitochondrial Abnormalities Caused by ALS mutations. Scientific Reports, 11, Article No. 13613. https://doi.org/10.1038/s41598-021-93189-6 |
[61] | Ling, S.C., Dastidar, S.G., Tokunaga, S., Ho, W.Y., Lim, K., Ilieva, H., et al. (2019) Overriding FUS Autoregulation in Mice Triggers Gain-of-Toxic Dysfunctions in RNA Metabolism and Autophagy-Lysosome Axis. eLife, 8, e40811.
https://doi.org/10.7554/eLife.40811 |
[62] | Ho, W.Y., Agrawal, I., Tyan, S.H., Sanford, E., Chang, W.T., Lim, K., et al. (2021) Dysfunction in Nonsense-Mediated Decay, Protein Homeostasis, Mitochondrial Function, and Brain Connectivity in ALS-FUS Mice with Cognitive Deficits. Acta Neuropathologica Communications, 9, Article No. 9. https://doi.org/10.1186/s40478-020-01111-4 |
[63] | Baron, D.M., Matheny, T., Lin, Y.C., Sanford, E., Chang, W.T., Lim, K., et al. (2019) Quantitative Proteomics Identifies Proteins that Resist Translational Repression and Become Dysregulated in ALS-FUS. Human Molecular Genetics, 28, 2143-2160. https://doi.org/10.1093/hmg/ddz048 |
[64] | Nakaya, T. and Maragkakis, M. (2018) Amyotrophic Lateral Sclerosis associated FUS Mutation Shortens Mitochondria and Induces Neurotoxicity. Scientific Reports, 8, Article No. 15575. https://doi.org/10.1038/s41598-018-33964-0 |
[65] | Kawahara, D., Suzuki, T. and Nakaya, T. (2021) Cytoplasmic Granule Formation by FUS-R495X Is Attributable to Arginine Methylation in All Gly-Rich, RGG1 and RGG2 Domains. Genes to Cells, 26, 190-197.
https://doi.org/10.1111/gtc.12827 |
[66] | Shiihashi, G., Ito, D., Yagi, T., Nihei, Y., Ebine, T. and Suzuki, N. (2016) Mislocated FUS Is Sufficient for Gain-of-Toxic- Function Amyotrophic Lateral Sclerosis Phenotypes in Mice. Brain, 139, 2380-2394.
https://doi.org/10.1093/brain/aww161 |
[67] | Picchiarelli, G., Demestre, M., Zuko, A., Been, M., Higelin, J., Dieterle, S., et al. (2019) FUS-Mediated Regulation of Acetylcholine Receptor Transcription at Neuromuscular Junctions Is Compromised in Amyotrophic Lateral Sclerosis. Nature Neuroscience, 22, 1793-1805. https://doi.org/10.1038/s41593-019-0498-9 |
[68] | Scekic-Zahirovic, J., Sanjuan-Ruiz, I., Kan, V., Megat, S., De Rossi, P., Dieterle, S., et al. (2021) Cytoplasmic FUS Triggers Early Behavioral Alterations Linked to Cortical Neuronal Hyperactivity and Inhibitory Synaptic Defects. Nature Communications, 12, Article No. 3028. https://doi.org/10.1038/s41467-021-23187-9 |
[69] | Sahadevan, S., Hembach, K.M., Tantardini, E., Perez-Berlanga, M., Hruska-Plochan, M., Megat, S., et al. (2021) Synaptic FUS Accumulation Triggers Early Misregulation of Synaptic RNAs in a Mouse Model of ALS. Nature Communications, 12, Article No. 3027. https://doi.org/10.1038/s41467-021-23188-8 |
[70] | Markert, S.M., Skoruppa, M., Yu, B., Mulcahy, B., Zhen, M., Gao, S., et al. (2020) Overexpression of an ALS-Associated FUS Mutation in C. elegans Disrupts NMJ Morphology and Leads to Defective Neuromuscular Transmission. Biology Open, 9, Article No. bio055129. https://doi.org/10.1242/bio.055129 |
[71] | Rhine, K., Makurath, M.A., Liu, J., Skanchy, S., Lopez, C., Catalan, K.F., et al. (2020) ALS/FTLD-Linked Mutations in FUS Glycine Residues Cause Accelerated Gelation and Reduced Interactions with Wild-Type FUS. Molecular Cell, 80, 666-681.e8. https://doi.org/10.1016/j.molcel.2020.10.014 |
[72] | Reber, S., Jutzi, D., Lindsay, H., Devoy, A., Mechtersheimer, J., Levone, B.R., et al. (2021) The Phase Separation-Depen- dent FUS Interactome Reveals Nuclear and Cytoplasmic Function of Liquid-Liquid Phase Separation. Nucleic Acids Research, 49, 7713-7731. https://doi.org/10.1093/nar/gkab582 |
[73] | Plaitakis, A. and Caroscio, J.T. (1987) Abnormal Glutamate Metabolism in Amyotrophic Lateral Sclerosis. Annals of Neurology, 22, 575-579. https://doi.org/10.1002/ana.410220503 |
[74] | Amyotrophic Lateral Sclerosis/Riluzole Study Group II, Lacomblez, L., Bensimon, G., Leigh, P.N., Guillet, P. and Meininger, V. (1996) Dose-Rang ing Study of Riluzole in Amyotrophic Lateral Sclerosis. Lancet, 347, 1425-1431.
https://doi.org/10.1016/S0140-6736(96)91680-3 |
[75] | Watanabe, T., Yuki, S., Egawa, M. and Nishi, H. (1994) Protective Effects of MCI-186 on Cerebral Ischemia: Possible Involvement of Free Radical Scavenging and Antioxidant Actions. Journal of Pharmacology and Experimental Therapeutics, 268, 1597-1604. |
[76] | Arenas, A., Chen, J., Kuang, L., Barnett, K.R., Kasarskis, E.J., Gal, J., et al. (2020) Lysine Acetylation Regulates the RNA Binding, Subcellular Localization and Inclusion Formation of FUS. Human Molecular Genetics, 29, 2684-2697.
https://doi.org/10.1093/hmg/ddaa159 |
[77] | Fang, M.Y., Markmiller, S., Vu, A.Q., Javaherian, A., Dowdle, W.E., Jolivet. P., et al. (2019) Small-Molecule Modulation of TDP-43 Recruitment to Stress Granules Prevents Persistent TDP-43 Accumulation in ALS/FTD. Neuron, 103, 802-819.e11. https://doi.org/10.1016/j.neuron.2019.05.048 |