|
Applied Physics 2022
基于傅里叶变换的三维轮廓测量技术研究
|
Abstract:
随着三维测量技术的不断发展,通过投影光栅条纹对三维物体进行测量已经成为近年以来的研究热点。本文主要研究了基于光栅条纹的相位展开方法,并详细阐述其工作原理,推导展开相位与实际物体高度之间的几何映射关系。傅里叶变换轮廓术(FIP)进行三维面形测量时,若无频谱混叠,可以得到很好的测量效果,但由于FIP是全局变换,频域内丢失了空间信息。当被测物体形状复杂或被噪声严重污染时,频域中频谱分布展宽,可能发生频谱混叠,导致基频分量提取不完整,从而不能精确地测量被测物体。因此,本文通过对传统FTP法以及两种改进FTP法的测量范围进行分析,并比较这两种改进方法间的异同。实验表明,π相移法的测量结果要优于灰度图法的测量结果,且随着物体高度梯度值的增加,π相移法的测量结果逐渐优于灰度图法的测量结果。
With the continuous development of 3D measurement technology, the measurement of 3D objects by projecting and shooting structured optical stripes has become a hot research topic in recent years. This paper mainly studies the phase unfolding method based on grating stripes, elaborates its implementation principle, and derives the geometric mapping relationship between the unfolded phase and the actual object height. Fourier Transform Profilometry (FIP) for 3D surface shape measurement, if no spectral overlap, can get good measurement results, but because FIP is a global transform, the spatial information is lost in the frequency domain. When the measured object has a complex shape or is seriously polluted by noise, the spectrum distribution in the frequency domain is broadened and spectral overlap may occur, resulting in incomplete extraction of the fundamental frequency components, and the measured object can not be recovered correctly. Therefore, in this paper, a comparative study of the measurement range of the traditional FTP method and two improved FTP methods is conducted by combining experimental methods, and the similarities and differences between these two improved methods are analyzed by means of experiments. The experiments show that the measurement results of the π-phase shift method are better than those of the grayscale map method, and the measurement results of the π-phase shift method are gradually better than those of the grayscale map method as the value of the object height gradient increases.
[1] | 刘文耀, 等. 光电图像处理[M]. 北京: 电子工业出版社, 2002. |
[2] | 赵焕东. 相位测量轮廓术的理论研究及应用[D]: [博士学位论文]. 杭州: 浙江大学, 2001. |
[3] | 陈家璧, 苏显渝. 光学信息技术原理及应用[M]. 北京: 高等教育出版社, 2002. |
[4] | 陈文静, 苏显渝. 利用灰度图减小Fourier变换轮廓术的频谱混叠[J]. 激光杂志, 2002, 23(6): 37-38. |
[5] | Sun, J.R. and Zou, W. (2014) Saturation Model and Phase Recovering for Phase Measuring Profilometry. Applied Mechanics and Materials, 513, 3996-3999. https://doi.org/10.4028/www.scientific.net/AMM.513-517.3996 |
[6] | Manzardo, O., Herzig, H.P., Marxer, C.R., et al. (1999) Miniaturized Time-Scanning Fourier Transform Spectrometer Based on Silicon Technology. Optics Letters, 24, 1705-1707. https://doi.org/10.1364/OL.24.001705 |
[7] | Falade, K.O. and Ayetigbo, O.E. (2021) Influence of Physical and Chemical Modifications on Granule Size Frequency Distribution, Fourier Transform Infrared (FTIR) Spectra and Adsorption Isotherms of Starch from Four Yam (Dioscorea spp.) Cultivars. Journal of Food Science and Technology, 1-13.
https://doi.org/10.1007/s13197-021-05200-7 |
[8] | Su, X.-Y., Li, J. and Gou, L.-R. (1988) An Improved Fourier Transform Profilometry. Proceedings of SPIE, 954, 32-35.
https://doi.org/10.1117/12.947595 |
[9] | Yi, J. and Huang, S. (1997) Modified Fourier Transform Profilometry for the Measurement of 3-D Steep Shapes. Optics and Lasers in Engineering, 27, 493-505. https://doi.org/10.1117/12.947595 |
[10] | Burton, D.R., Goodall, A.J., et al. (1995) The Use of Carrier Frequency-Shifting for the Elimination of Phase Discontinuities in Fourier-Transform Profilometry. Optics and Lasers in Engineering, 23, 245-257.
https://doi.org/10.1016/0143-8166(95)00005-9 |
[11] | Takeda, M., Gu, Q., Kinoshita, M., et al. (1997) Frequency-Multiplex Fourier-Transform Profilometry: A Single Shot Three-Dimensional Shape Measurement of Objects with Large Height Discontinuities and/or Surface Isolations. Applied Optics, 36, 5347-5354. https://doi.org/10.1364/AO.36.005347 |
[12] | 徐友洪, 童根树. 基于双椭圆滤波算法的傅里叶变换轮廓术[J]. 组合机床与自动化加工技术, 2021(8): 36-39, 43. |
[13] | 魏小华, 徐文俊, 徐雪雅. 基于改进Sierra抖动算法的微离焦投影三维轮廓测量技术研究[J]. 计量学报, 2020, 41(6): 669-675. https://doi.org/10.3969/j.issn.1000-1158.2020.06.07 |
[14] | Liu, X.R. and Kofman, J. (2019) Real-Time 3D Surface-Shape Measurement Using Background-Modulated Modified Fourier Transform Profilometry with Geometry-Constraint. Optics and Lasers in Engineering, 115, 217-224.
https://doi.org/10.1016/j.optlaseng.2018.11.014 |
[15] | 周灿林, 杨允鑫, 司书春, 等. 一种改进的消零频傅里叶变换轮廓术[J]. 光电子激光, 2014, 25(6): 1140-1145. |
[16] | 陈文静, 苏显渝, 曹益平, 等. 傅里叶变换轮廓术中抑制零频的新方法[J]. 中国激光, 2004, 31(6): 740-744.
https://doi.org/10.3321/j.issn:0258-7025.2004.06.023 |
[17] | 张宪超, 武继刚, 蒋增荣, 等. 离散傅里叶变换的算术傅里叶变换算法[J]. 电子学报, 2000, 28(5): 105-107.
https://doi.org/10.3321/j.issn:0372-2112.2000.05.030 |
[18] | 雍得鹏, 邹金龙, 夏雷, 等. 基于全相位傅里叶变换的多普勒信号频谱提取[J]. 探测与控制学报, 2016, 38(3): 41-46. |