全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

脉冲激光沉积法制备Mn-Co-Ge-Si薄膜的研究
Study on the Synthesis of Mn-Co-Ge-Si Thin Films via Pulsed Laser Deposition Technique

DOI: 10.12677/APP.2022.122008, PP. 61-67

Keywords: Mn-Co-Ge-Si薄膜,磁制冷,磁相变,磁热性能
Mn-Co-Ge-Si Thin Film
, Magnetic Refrigeration, Magnetic Phase Transition, Magnetocaloric Property

Full-Text   Cite this paper   Add to My Lib

Abstract:

Mn-Co-Ge基块体合金具有优异的磁热性能,但由于磁结构耦合特性,导致在进行磁热转换时合金块材容易发生碎裂。将块材样品制备成薄膜状态是目前提高其韧性的重要手段之一。本文采用脉冲激光沉积技术制备出Mn-Co-Ge-Si薄膜样品,研究衬底种类以及热处理工艺等因素对薄膜晶体结构以及表面形貌的影响。实验结果表明,Mn-Co-Ge-Si薄膜可在具有同样六方结构的蓝宝石Al2O3衬底上择优取向生长,且薄膜表面平整致密。该薄膜磁热材料的成功制备拓宽了磁热材料在磁制冷领域的应用范围。
Mn-Co-Ge-based alloys show excellent magnetocaloric effects, but accompanying serious weakness, that is the break-up of the samples during the phase transitions due to magnetostructural coupling. Fabricating thin films rather than bulk samples has been proved to be an effective way to overcome this weakness at present. This work reports the deposition of Mn-Co-Ge-Si thin films using the pulsed laser deposition technique. The effect of substrate categories and annealing treatment on the crystal structure and morphology of the films was investigated. The results reflect that Mn-Co-Ge-Si thin films with a dense and uniform surface show textured growth on sapphire Al2O3 substrate having a similar hexagonal structure. The successful fabrication of the films widens the range of applications of magnetocaloric materials in the magnetic refrigeration field.

References

[1]  Warburg, E. (2006) Magnetische Untersuchungen. Annalen der Physik, 249, 141-164.
https://doi.org/10.1002/andp.18812490510
[2]  Shen, B.G., Sun, J.R., Hu, F.X., et al. (2010) Recent Progress in Exploring Magnetocaloric Materials. Advanced Materials, 21, 4545-4564.
https://doi.org/10.1002/adma.200901072
[3]  Debye, P. (2010) Einige Bemerkungen zur Magnetisierung bei tiefer Temperatur. Annalen der Physik, 386, 1154-1160.
https://doi.org/10.1002/andp.19263862517
[4]  Giauque, W.F. (2002) A Theromodynamic Treatment of Certain Magnetic Effects. A Proposed Method of Producing Temperatures Considerably below 1? Absolute. Journal of the American Chemical Society, 49, 1864-1870.
https://doi.org/10.1021/ja01407a003
[5]  Reid, C.E., Barclay, J.A., Hall, J.L., et al. (1994) Selection of Magnetic Materials for an Active Magnetic Regenerative Refrigerator. Journal of Alloys & Compounds, 207-208, 366-371.
https://doi.org/10.1016/0925-8388(94)90241-0
[6]  Russek, S.L. and Zimm, C.B. (2006) Potential for Cost Effective Magnetocaloric Air Conditioning Systems. International Journal of Refrigeration, 29, 1366-1373.
https://doi.org/10.1016/j.ijrefrig.2006.07.019
[7]  Gschneidnerjr, K.A., Pecharsky, V.K., Tsokol, A.O., et al. (2005) Recent Developments in Magnetocaloric Materials. Reports on Progress in Physics, 68, 1479-1539.
https://doi.org/10.1088/0034-4885/68/6/R04
[8]  Fries, M., et al. (2017) Microstructural and Magnetic Properties of Mn-Fe-P-Si (Fe2 P-Type) Magnetocaloric Compounds. Acta Materialia, 132, 222-229.
https://doi.org/10.1016/j.actamat.2017.04.040
[9]  Lyubina, J., Schaefer, R., Martin, R., et al. (2010) Novel Design of La(Fe,Si)13 Alloys towards High Magnetic Refrigeration Performance. Advanced Materials, 22, 3735-3739.
https://doi.org/10.1002/adma.201000177
[10]  Miao, X.F., Sepehri-Amin, H., Hono, K., et al. (2017) Structural Origin of Hysteresis for Hexagonal (Mn,Fe)2(P,Si) Magneto-Caloric Compound. Scripta Materialia, 138, 96-99.
https://doi.org/10.1016/j.scriptamat.2017.05.043
[11]  Hamad, M.A. (2014) Magnetocaloric Effect in (001)-Oriented MnAs Thin Film. Journal of Superconductivity & Novel Magnetism, 27, 263-267.
https://doi.org/10.1007/s10948-013-2254-9
[12]  Dang, D.D., Tuan, D.A., Thiet, D.V., et al. (2012) Giant Magnetocaloric Effect of Mn0.92Ba0.08As Thin Film Grown on Al2O3(0001) Substrate. Journal of Applied Physics, 111, Article ID: 07C310.
https://doi.org/10.1063/1.3675988
[13]  Liu, Y., Qiao, K.M., Zuo, S.L., et al. (2018) Negative Thermal Expansion and Magnetocaloric Effect in Mn-Co-Ge-In Thin Films. Applied Physics Letters, 112, Article ID: 012401.
https://doi.org/10.1063/1.5009985
[14]  胡林彦, 张庆军, 沈毅. X射线衍射分析的实验方法及其应用[J]. 河北联合大学学报(自然科学版), 2004, 26(3): 83-86+93.
[15]  刘恩克, 王文洪, 张宏伟, 等. Ni2In型六角MM’X铁磁马氏体相变材料及其研究进展[J]. 中国材料进展, 2012, 31(4): 13-25.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133