全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

贵州省2015~2019年空气质量时空变化特征及其影响因素分析
Spatial-Temporal Variation Characteristics and Influencing Factors of Air Quality in Guizhou Province from 2015 to 2019

DOI: 10.12677/AEP.2022.121012, PP. 90-102

Keywords: AQI,地理探测器,灰色关联模型,贵州省空气质量,空间分异
AQI
, Geographic Detector, Grey Relational Model, Air Quality in Guizhou Province,Space Differentiation

Full-Text   Cite this paper   Add to My Lib

Abstract:

空气质量与人们生产、生活以及人体健康息息相关,在社会经济和城镇化快速发展时期,空气质量更容易受到影响,因此研究空气质量的时空变化及其影响因素具有重要的社会价值和理论价值。以贵州省2015~2019年空气质量指数以及主要污染物数据对其空气质量时序变化进行分析,并结合空间插值、地理探测器及灰色关联模型对其空间分异和驱动因素进行了探究。结果表明:1) 贵州省2015~2019年空气质量整体较好,且整体呈向好的方向发展。空气质量月际变化特征基本与干湿季相吻合,主要污染物浓度除O3外,基本呈下降趋势。2) 贵州省2015~2019年AQI值有明显的空间格局变化,2015~2017年呈现出西北高,东南低的空间格局,2018~2019年整体呈现出东北高,东南低的空间格局。3) 地理探测器和灰色关联模型均表明气象因子是影响贵州省2015~2019年空气质量的主要影响因子,而社会经济是次要影响因子,且因子交互协同作用中气象因子间两两协同作用更加显著。4) 贵州省2015~2019年空气质量受气象因素和社会经济因素共同影响,我们推测空气污染事件多发生在特殊天气条件下以及有利于污染物形成的天气条件下。研究结果将为贵州省空气质量防治及其空气质量的提升提供一定的科学依据。
Air quality is closely related to people’s production, life and human health. In the period of rapid development of social economy and urbanization, air quality is more susceptible to impact. Therefore, studying the spatio-temporal changes of air quality and its influencing factors has important social and theoretical value. Based on the air quality index and main pollutant data of Guizhou Province from 2015 to 2019, the temporal changes of air quality were analyzed, and the spatial differentiation and driving factors were explored by combining spatial interpolation, geographic detector and grey correlation model. The results showed that: 1) The air quality in Guizhou Province was generally good from 2015 to 2019, and developed in a good direction as a whole. The monthly variation characteristics of air quality are basically consistent with the dry and wet seasons. Except for the concentration of main pollutant O3, it basically shows a downward trend. 2) The AQI value of Guizhou Province showed obvious spatial pattern changes from 2015 to 2019. From 2015 to 2017, it showed a spatial pattern of high value in northwest and low value in southeast, and from 2018 to 2019, it showed a spatial pattern of high value in northeast and low value in southwest. 3) Both geographical detector and grey correlation model showed that meteorological factors were the main influencing factor of air quality in Guizhou Province from 2015 to 2019, while social economy was the secondary influencing factor. Moreover, the synergistic effect between meteorological factors was more significant. 4) Air quality in Guizhou Province from 2015 to 2019 was affected by meteorological factors and social and economic factors. We speculated that air pollution events mostly occurred under special weather conditions and favorable weather conditions for the formation of pollutants. The results will provide a scientific basis for air quality control and improvement in Guizhou Province.

References

[1]  李小飞, 张明军, 王圣杰, 等. 中国空气污染指数变化特征及影响因素分析[J]. 环境科学, 2012, 33(6): 1936-1943.
[2]  张向敏, 罗燊, 李星明, 等. 中国空气质量时空变化特征[J]. 地理科学, 2020, 40(2): 190-199.
[3]  Huang, W., Schinasi, L.H., Kenyon, C.C., et al. (2021) Effects of Ambient Air Pollution on Childhood Asthma Exacerbation in the Philadelphia Metropolitan Region, 2011-2014. Environmental Research, 197, Article ID: 110955.
https://doi.org/10.1016/j.envres.2021.110955
[4]  Yoo, E.-H., Brown, P. and Eum, Y. (2018) Ambient Air Quality and Spatio-Temporal Patterns of Cardiovascular Emergency Department Visits. International Journal of Health Geographics, 17, 18.
https://doi.org/10.1186/s12942-018-0138-8
[5]  胡亚滨, 刘世建, 江帆, 等. 气候变化对儿童过敏性疾病的影响[J]. 环境与职业医学, 2019, 36(10): 960-969.
[6]  Pope, C.A. and Dockery, D.W. (2006) Health Effects of Fine Particulate Air Pollution: Lines That Connect. Journal of the Air & Waste Management Association, 56, 709-742.
https://doi.org/10.1080/10473289.2006.10464485
[7]  Pope III, C.A. (2002) Lung Cancer, Cardiopulmonary Mortality, and Long-Term Exposure to Fine Particulate Air Pollution. JAMA, 287, 1132.
https://doi.org/10.1001/jama.287.9.1132
[8]  Gerasopoulos, E., Kouvarakis, G., Babasakalis, P., et al. (2006) Origin and Variability of Particulate Matter (PM10) Mass Concentrations over the Eastern Mediterranean. Atmospheric Environment, 40, 4679-4690.
https://doi.org/10.1016/j.atmosenv.2006.04.020
[9]  Viana, M., Kuhlbusch, T.A.J., Querol, X., et al. (2008) Source Apportionment of Particulate Matter in Europe: A Review of Methods and Results. Journal of Aerosol Science, 39, 827-849.
https://doi.org/10.1016/j.jaerosci.2008.05.007
[10]  Abdalmogith, S.S. and Harrison, R.M. (2006) An Analysis of Spatial and Temporal Properties of Daily Sulfate, Nitrate and Chloride Concentrations at UK Urban and Rural Sites. Journal of Environmental Monitoring, 8, 691.
https://doi.org/10.1039/b601562j
[11]  Kouvarakis, G., Tsigaridis, K., Kanakidou, M., et al. (2000) Temporal Varia-tions of Surface Regional Background Ozone over Crete Island in the Southeast Mediterranean. Journal of Geophysical Research: Atmospheres, 105, 4399-4407.
https://doi.org/10.1029/1999JD900984
[12]  Ying, Q., Fraser, M.P., Griffin, R.J., et al. (2007) Verification of a Source-Oriented Externally Mixed Air Quality Model during a Severe Photochemical Smog Episode. Atmospheric En-vironment, 41, 1521-1538.
https://doi.org/10.1016/j.atmosenv.2006.10.004
[13]  Perez, L., Medina-Ramón, M., Künzli, N., et al. (2009) Size Fractionate Particulate Matter, Vehicle Traffic, and Case-Specific Daily Mortality in Barcelona, Spain. Environmental Science & Technology, 43, 4707-4714.
https://doi.org/10.1021/es8031488
[14]  王振波, 方创琳, 许光, 等. 2014年中国城市PM2.5浓度的时空变化规律[J]. 地理学报, 2015, 70(11): 1720-1734.
[15]  Li, C., Li, H., Feng, S., et al. (2019) A Study on the Spatiotemporal Characteristics and Change Trend of the Atmospheric Environmental Carrying Capacity in the Jing-Jin-Ji Region, China. Journal of Cleaner Production, 211, 27-35.
https://doi.org/10.1016/j.jclepro.2018.11.045
[16]  Chen, Z., Cai, J., Gao, B., et al. (2017) Detecting the Causality Influence of Individual Meteorological Factors on Local PM2.5 Concentration in the Jing-Jin-Ji Region. Scientific Reports, 7, Article No. 40735.
https://doi.org/10.1038/srep40735
[17]  Zhou, W., Wu, X., Ding, S., et al. (2020) Predictive Analysis of the Air Quality Indicators in the Yangtze River Delta in China: An application of a Novel Seasonal Grey Model. Science of the Total Environment, 748, Article ID: 141428.
https://doi.org/10.1016/j.scitotenv.2020.141428
[18]  Ye, L. and Ou, X. (2019) Spatial-Temporal Analysis of Daily Air Quality Index in the Yangtze River Delta Region of China during 2014 and 2016. Chinese Geographical Science, 29, 382-393.
https://doi.org/10.1007/s11769-019-1036-0
[19]  Peng, G., Wang, X., Wu, Z., et al. (2011) Characteristics of Particulate Matter Pollution in the Pearl River Delta Region, China: An Observational-Based Analysis of Two Monitoring Sites. Journal of Environmental Monitoring, 13, 1927-1934.
https://doi.org/10.1039/c0em00776e
[20]  Gao, H., Yang, W., Yang, Y., et al. (2019) Analysis of the Air Quality and the Effect of Governance Policies in China’s Pearl River Delta, 2015-2018. Atmosphere, 10, 412.
https://doi.org/10.3390/atmos10070412
[21]  艾沙江?艾力, 梁菲菲, 徐海量, 等. 和田绿洲沙尘暴强度及其影响因子分析——以墨玉县为例[J]. 环境污染与防治, 2020, 42(9): 1128-1131.
[22]  买买提阿布都拉?依米尔, 布帕提曼?艾拜都拉, 陈天宇, 等. 新疆和田绿洲空气质量状况与气象条件的关系[J]. 干旱区研究, 2020, 37(1): 46-57.
[23]  Yang, D., Wang, X., Xu, J., et al. (2018) Quantifying the Influence of Natural and Socioeconomic Factors and Their Interactive Impact on PM2.5 Pollution in China. Environmental Pollution, 241, 475-483.
https://doi.org/10.1016/j.envpol.2018.05.043
[24]  许文轩, 田永中, 肖悦, 等. 华北地区空气质量空间分布特征及成因研究[J]. 环境科学学报, 2017, 37(8): 3085-3096.
[25]  Fu, B., Gao, X.H. and Wu, L. (2018) Grey Relational Analysis for the AQI of Beijing, Tianjin, and Shijiazhuang and Related Countermeasures. Grey Systems: Theory and Application, 8, 156-166.
https://doi.org/10.1108/GS-12-2017-0046
[26]  何枫, 马栋栋. 雾霾与工业化发展的关联研究——中国74个城市的实证研究[J]. 软科学, 2015, 29(6): 110-114.
[27]  Guo, P., Umarova, A.B. and Luan, Y. (2020) The Spatio-temporal Characteristics of the Air Pollutants in China from 2015 to 2019. PLoS ONE, 15, e0227469.
https://doi.org/10.1371/journal.pone.0227469
[28]  黄鑫宇, 王雷, 潘虹, 等. 长三角城市群的PM2.5和PM10演变趋势及空间效应分析[J]. 环境污染与防治, 2021, 43(10): 1309-1315.
[29]  胡志高, 李光勤, 曹建华. 环境规制视角下的区域大气污染联合治理——分区方案设计、协同状态评价及影响因素分析[J]. 中国工业经济, 2019(5): 24-42.
[30]  杨佳, 葛馨, 吴起鑫. 贵阳市主城区空气质量指数时空分布特征[J]. 长江流域资源与环境, 2018, 27(8): 1827-1835.
[31]  李浪, 白慧, 方荻, 等. 贵州省空气污染过程的大气环流特征及分型研究[J]. 中低纬山地气象, 2021, 45(5): 34-41.
[32]  舒卓智, 赵天良, 郑小波, 等. 清洁大气背景下贵阳空气质量变化及气象作用[J]. 中国环境科学, 2017, 37(12): 4460-4468.
[33]  苏志华, 韩会庆, 陈波. 贵阳城区大气污染物的时空变化和复合污染特征[J]. 中国岩溶, 2020, 39(3): 442-452.
[34]  王冉熙, 宋丹. 贵州西南三地空气质量特征及预报研究[J]. 中低纬山地气象, 2021, 45(2): 59-64.
[35]  曹蔚, 郑小波, 赵天良, 等. 贵州省2015-2019年空气质量及大气污染物时空分布特征研究[J]. 高原山地气象研究, 2020, 40(2): 63-69.
[36]  尹琴, 胡佳佳, 袁雪, 等. 贵州省环境空气质量典型污染物浅析[J]. 环保科技, 2020, 26(6): 35-39.
[37]  周江, 刘露, 练川. 贵州省城市环境空气中颗粒物污染特征分析[J]. 科技风, 2019(10): 135-136.
[38]  文林琴, 栗忠飞. 2004-2016年贵州省石漠化状况及动态演变特征[J]. 生态学报, 2020, 40(17): 5928-5939.
[39]  Zhang, A., Qi, Q., Jiang, L., et al. (2013) Population Exposure to PM2.5 in the Urban Area of Beijing. PLoS ONE, 8, e63486.
https://doi.org/10.1371/journal.pone.0063486
[40]  吴益玲, 李成名, 戴昭鑫, 等. 城区空气质量指数时空分布特征及影响机制分析[J]. 测绘通报, 2020(4): 81-86.
[41]  Zhang, L., An, J., Liu, M., et al. (2020) Spatiotemporal Variations and Influencing Factors of PM2.5 Concentrations in Beijing, China. Environmental Pollution, 262, Article ID: 114276.
https://doi.org/10.1016/j.envpol.2020.114276
[42]  Song, Y., Wang, J., Ge, Y., et al. (2020) An Optimal Parameters-Based Geographical Detector Model Enhances Geographic Characteristics of Explanatory Variables for Spatial Heterogeneity Analysis: Cases with Different Types of Spatial Data. GIScience & Remote Sensing, 57, 593-610.
https://doi.org/10.1080/15481603.2020.1760434
[43]  刘思峰, 蔡华, 杨英杰, 等. 灰色关联分析模型研究进展[J]. 系统工程理论与实践, 2013, 33(8): 2041-2046.
[44]  徐君, 贾倩. 基于灰色关联分析的江苏省海绵城市建设影响因素分析[J]. 生态经济, 2021, 37(1): 83-89.
[45]  晏红明, 李清泉, 孙丞虎, 等. 中国西南区域雨季开始和结束日期划分标准的研究[J]. 大气科学, 2013, 37(5): 1111-1128.
[46]  Sun, Y., Zhao, C., Su, Y., et al. (2019) Distinct Impacts of Light and Heavy Precipitation on PM2.5 Mass Concentration in Beijing. Earth and Space Science, 6, 1915-1925.
https://doi.org/10.1029/2019EA000717
[47]  赵辉, 郑有飞, 吴晓云, 等. 江苏省大气复合污染特征与相关气象驱动[J]. 中国环境科学, 2018, 38(8): 2830-2839.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133