全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

用于元件抛光的CeO2基复合材料的研究进展
Advances in the Research of CeO2-Based Composites for Component Polishing

DOI: 10.12677/NAT.2022.121002, PP. 8-17

Keywords: CeO2,抛光粉,合成方法,核/壳结构,ECMP,PCMP
CeO2
, Polishing Powder, Synthesis Method, Nuclear/Shell Structure, ECMP, PCMP

Full-Text   Cite this paper   Add to My Lib

Abstract:

CeO2是髙效抛光材料,具有粒度均匀、抛光速率快、表面精度高、消耗低等优点,成为高端抛光粉原料的第一选择。本文主要从磨料浓度、晶面结构、添加剂等几个方面论述了影响抛光性能的因素,并讨论了对CeO2基复合材料及其抛光性能的相关研究,其中着重论述了核/壳结构和不同元素掺杂改性磨料的制备方法,最后介绍了新型抛光技术的研究进展。
CeO
2 is an efficient polishing material with the advantages of uniform particle size, fast polishing rate, high surface accuracy and low consumption, which makes it the first choice of raw materials for high-end polishing powders. This paper mainly discusses the factors affecting polishing performance from several aspects such as abrasive concentration, crystal structure, additives, etc., and discusses the related research on CeO2-based composites and their polishing performance, which focuses on the preparation methods of core/shell structure and different elemental doping modified abrasives, and finally introduces the research progress of new polishing technology.

References

[1]  许宁, 马家辉, 刘琦. CeO2基磨粒在化学机械抛光中的研究进展[J/OL]. 中国稀土学报: 1-14[2022-02-08].
http://kns.cnki.net/kcms/detail/11.2365.TG.20211001.1132.002.html
[2]  (美) Michael Quirk Julian Serda. 半导体制造技术[M]. 韩秋生, 等, 译. 北京: 电子工业出版社, 2007.
[3]  夏超. 纳米氧化铈抛光液的制备与性能研究[D]: [硕士学位论文]. 北京: 中国石油大学, 2016.
[4]  陈亮亮. CeO2抛光液悬浮分散性能的研究与改进[D]: [硕士学位论文]. 上海: 华东理工大学, 2021.
[5]  吴媛媛, 衣守志, 魏志杰, 任立华, 方中心, 梁恩武, 叶雪芳, 张桂克. 氧化铈抛光液悬浮性和再分散性研究[J]. 中国粉体技术, 2015, 21(2): 57-60.
[6]  Wang, L., Zhang, K., Song, Z. and Feng, S. (2007) Ceria Concentration Effect on Chemical Mechanical Polishing of Optical Glass. Applied Surface Science, 253, 4951-4954.
https://doi.org/10.1016/j.apsusc.2006.10.074
[7]  Kwak, D., Oh, S., Kim, J., Yun, J. and Kim, T. (2021) Study on the Effect of Ceria Concentration on the Silicon Oxide Removal Rate in Chemical Mechanical Planarization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 610, Article ID: 125670.
https://doi.org/10.1016/j.colsurfa.2020.125670
[8]  Cook, L.M. (1990) Chemical Processes in Glass Polishing. Journal of Non-Crystalline Solids, 120, 152-171.
https://doi.org/10.1016/0022-3093(90)90200-6
[9]  Xie, L.L., Cheng, J., Wang, T.Q. and Lu, X.C. (2021) Me-chanical Wear Behavior between CeO2(100), CeO2(110), CeO2(111), and Silicon Studied through Atomic Force Mi-croscopy. Tribology International, 153, Article ID: 106616.
https://doi.org/10.1016/j.triboint.2020.106616
[10]  Onodera, T., Takahashi, H. and Nomura, S. (2020) First-Principles Molecular Dynamics Investigation of Ceria/Silica Sliding Interface toward Functional Materials Design for Chemical Mechanical Polishing Process. Applied Surface Science, 530, Article ID: 147259.
https://doi.org/10.1016/j.apsusc.2020.147259
[11]  Veera Dandu, P.R., Devarapalli, V.K. and Babu, S.V. (2010) Reverse Selectivity—High Silicon Nitride and Low Silicon Dioxide Removal Rates Using Ceria Abrasive-Based Disper-sions. Journal of Colloid and Interface Science, 347, 267-276.
https://doi.org/10.1016/j.jcis.2010.03.071
[12]  Sabia, R. and Stevens, H.J. (2000) Performance Characterization of Cerium Oxide Abrasives for Chemical-Mechanical Polish-ing of Glass. Machining Science and Technology, 4, 235-251.
https://doi.org/10.1080/10940340008945708
[13]  Veera Dandu, P.R., Peethala, B.C., Amanapu, H.P. and Babu, S.V. (2011) Silicon Nitride Film Removal during Chemical Mechanical Polishing Using Ceria-Based Dispersions. Jour-nal of the Electrochemical Society, 158, H763-H767.
https://doi.org/10.1149/1.3596181
[14]  柴明霞, 胡建东, 冯晓平, 周雪珍, 罗军明, 李永绣. SiO2-CeO2复合氧化物的制备及抛光性能[J]. 无机化学学报, 2007, 23(4): 623-629.
[15]  韩磊, 李梅, 柳召刚, 王觅堂, 胡艳宏, 陶豹. 喷雾干燥法制备CeO2-SiO2复合抛光粉[J]. 中国粉体技术, 2015, 21(3): 16-20.
[16]  Cheng, J., Huang, S., Li, Y., Wang, T.Q., Xie, L.L. and Lu, X.C. (2020) RE (La, Nd and Yb) Doped CeO2 Abrasive Particles for Chemical Me-chanical Polishing of Dielectric Materials: Experimental and Computational Analysis. Applied Surface Science, 506, Arti-cle ID: 144668.
https://doi.org/10.1016/j.apsusc.2019.144668
[17]  陈爱莲, 王婉莹, 马翔宇, 蔡文杰, 陈杨. Sm掺杂核-壳结构介孔SiO2@CeO2复合颗粒的制备和抛光性能[J]. 复合材料学报, 2020, 37(4): 919-926.
[18]  Chen, A.L., Duan, Y.H., Mu, Z.Y., Cai, W.J. and Chen, Y. (2021) Meso-Silica/Erbium-Doped Ceria Binary Particles as Functionalized Abrasives for Photochemical Mechanical Polishing (PCMP). Applied Surface Science, 550, Article ID: 149353.
https://doi.org/10.1016/j.apsusc.2021.149353
[19]  贾慧灵. 铈基稀土抛光粉氟化行为的第一性原理研究[D]: [博士学位论文]. 北京: 北京化工大学, 2017.
[20]  马驰, 刘紫婷, 史颖, 刘立志, 宋立新, 王连慧, 史胜男. 氧化铈改性热塑性聚氨酯抛光材料的制备与性能[J]. 塑料科技, 2021, 49(7): 1-7.
[21]  马翔宇, 陈杨. 抛光压力和抛光垫硬度对PMMA-CeO2核壳复合磨粒抛光性能的影响(英文) [J]. 微纳电子技术, 2019, 56(10): 835-843.
[22]  陈爱莲, 李泽锋, 陈杨. 氧化硅内核结构对核/壳包覆型SiO2/CeO2复合颗粒抛光性能的影响[J]. 材料研究学报, 2017, 31(6): 429-436.
[23]  Wang, W.Y., Chen, Y., Chen, A. and Ma, X.Y. (2020) Composite Particles with Dendritic Mesoporous-Silica Cores and Nano-Sized CeO2 Shells and Their Application to Abrasives in Chemical Mechanical Polishing. Materials Chemistry and Physics, 240, Article ID: 122279.
https://doi.org/10.1016/j.matchemphys.2019.122279
[24]  Chen, Y., Lu, J.X. and Chen, Z.G. (2011) Preparation, Characterization and Oxide CMP Performance of Composite Polystyrene-Core Ceria-Shell Abrasives. Microelectronic Engineering, 88, 200-205.
https://doi.org/10.1016/j.mee.2010.10.019
[25]  Chen, A., Long, J., Li, Z. and Chen, Y. (2018) Copper Chemi-cal Mechanical Polishing Performances of Polystyrene/Ceria Hybrid Abrasives with a Core/Shell Structure. Journal of Inorganic and Organometallic Polymers and Materials, 28, 1655-1663.
https://doi.org/10.1007/s10904-018-0840-9
[26]  Chen, Y., Zuo, C.Z., Li, Z.F. and Chen, A.L. (2018) Design of Ceria Grafted Mesoporous Silica Composite Particles for High-Efficiency and Damage-Free Oxide Chemical Mechanical Polishing. Journal of Alloys and Compounds, 736, 276-288.
https://doi.org/10.1016/j.jallcom.2017.11.112
[27]  周晨, 许向阳, 林顺天, 姚云飞. DND@CeO2核壳型磨料的制备及其在蓝宝石表面的抛光机理研究[J]. 矿冶工程, 2021, 41(2): 115-120.
[28]  Murata, J., Yodogawa, K. and Ban, K. (2017) Polishing-Pad-Free Electrochemical Mechanical Polishing of Single-Crystalline SiC Surfaces Using Polyurethane-CeO2 Core-Shell Particles. International Journal of Machine Tools and Manufacture, 114, 1-7.
https://doi.org/10.1016/j.ijmachtools.2016.11.007
[29]  Murata, J., Ueno, Y., Yodogawa, K. and Sugiura, T. (2016) Polymer/CeO2-Fe3O4 Multicomponent Core-Shell Particles for High-Efficiency Magnetic-Field-Assisted Polish-ing Processes. International Journal of Machine Tools and Manufacture, 101, 28-34.
https://doi.org/10.1016/j.ijmachtools.2015.11.004
[30]  Kim, E., Hong, J., Hong, S., Kanade, C., Seok, H., Kim, H.-U. and Kim, T. (2021) Improvement of Oxide Removal Rate in Chemical Mechanical Polishing by Forming Oxygen Vacancy in Ceria Abrasives via Ultraviolet Irradiation. Materials Chemistry and Physics, 273, Article ID: 124967.
https://doi.org/10.1016/j.matchemphys.2021.124967
[31]  Gao, B., Zhai, W.J., Zhai, Q. and Wang, C. (2021) Novel Photoelectrochemically Combined Mechanical Polishing Technology for Scratch-Free 4H-SiC Surface by Using CeO2-TiO2 Composite Photocatalysts and PS/CeO2 Core/Shell Abrasives. Applied Surface Science, 570, Article ID: 151141.
https://doi.org/10.1016/j.apsusc.2021.151141

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133