|
用于元件抛光的CeO2基复合材料的研究进展
|
Abstract:
CeO2是髙效抛光材料,具有粒度均匀、抛光速率快、表面精度高、消耗低等优点,成为高端抛光粉原料的第一选择。本文主要从磨料浓度、晶面结构、添加剂等几个方面论述了影响抛光性能的因素,并讨论了对CeO2基复合材料及其抛光性能的相关研究,其中着重论述了核/壳结构和不同元素掺杂改性磨料的制备方法,最后介绍了新型抛光技术的研究进展。
CeO2 is an efficient polishing material with the advantages
of uniform particle size, fast polishing rate, high surface accuracy and low
consumption, which makes it the first choice of raw materials for high-end
polishing powders. This paper mainly discusses the factors affecting polishing
performance from several aspects such as abrasive concentration, crystal
structure, additives, etc., and discusses the related research on CeO2-based
composites and their polishing performance, which focuses on the
preparation methods of core/shell structure and different elemental doping
modified abrasives, and finally introduces the research progress of new
polishing technology.
[1] | 许宁, 马家辉, 刘琦. CeO2基磨粒在化学机械抛光中的研究进展[J/OL]. 中国稀土学报: 1-14[2022-02-08].
http://kns.cnki.net/kcms/detail/11.2365.TG.20211001.1132.002.html |
[2] | (美) Michael Quirk Julian Serda. 半导体制造技术[M]. 韩秋生, 等, 译. 北京: 电子工业出版社, 2007. |
[3] | 夏超. 纳米氧化铈抛光液的制备与性能研究[D]: [硕士学位论文]. 北京: 中国石油大学, 2016. |
[4] | 陈亮亮. CeO2抛光液悬浮分散性能的研究与改进[D]: [硕士学位论文]. 上海: 华东理工大学, 2021. |
[5] | 吴媛媛, 衣守志, 魏志杰, 任立华, 方中心, 梁恩武, 叶雪芳, 张桂克. 氧化铈抛光液悬浮性和再分散性研究[J]. 中国粉体技术, 2015, 21(2): 57-60. |
[6] | Wang, L., Zhang, K., Song, Z. and Feng, S. (2007) Ceria Concentration Effect on Chemical Mechanical Polishing of Optical Glass. Applied Surface Science, 253, 4951-4954. https://doi.org/10.1016/j.apsusc.2006.10.074 |
[7] | Kwak, D., Oh, S., Kim, J., Yun, J. and Kim, T. (2021) Study on the Effect of Ceria Concentration on the Silicon Oxide Removal Rate in Chemical Mechanical Planarization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 610, Article ID: 125670. https://doi.org/10.1016/j.colsurfa.2020.125670 |
[8] | Cook, L.M. (1990) Chemical Processes in Glass Polishing. Journal of Non-Crystalline Solids, 120, 152-171.
https://doi.org/10.1016/0022-3093(90)90200-6 |
[9] | Xie, L.L., Cheng, J., Wang, T.Q. and Lu, X.C. (2021) Me-chanical Wear Behavior between CeO2(100), CeO2(110), CeO2(111), and Silicon Studied through Atomic Force Mi-croscopy. Tribology International, 153, Article ID: 106616.
https://doi.org/10.1016/j.triboint.2020.106616 |
[10] | Onodera, T., Takahashi, H. and Nomura, S. (2020) First-Principles Molecular Dynamics Investigation of Ceria/Silica Sliding Interface toward Functional Materials Design for Chemical Mechanical Polishing Process. Applied Surface Science, 530, Article ID: 147259. https://doi.org/10.1016/j.apsusc.2020.147259 |
[11] | Veera Dandu, P.R., Devarapalli, V.K. and Babu, S.V. (2010) Reverse Selectivity—High Silicon Nitride and Low Silicon Dioxide Removal Rates Using Ceria Abrasive-Based Disper-sions. Journal of Colloid and Interface Science, 347, 267-276. https://doi.org/10.1016/j.jcis.2010.03.071 |
[12] | Sabia, R. and Stevens, H.J. (2000) Performance Characterization of Cerium Oxide Abrasives for Chemical-Mechanical Polish-ing of Glass. Machining Science and Technology, 4, 235-251. https://doi.org/10.1080/10940340008945708 |
[13] | Veera Dandu, P.R., Peethala, B.C., Amanapu, H.P. and Babu, S.V. (2011) Silicon Nitride Film Removal during Chemical Mechanical Polishing Using Ceria-Based Dispersions. Jour-nal of the Electrochemical Society, 158, H763-H767.
https://doi.org/10.1149/1.3596181 |
[14] | 柴明霞, 胡建东, 冯晓平, 周雪珍, 罗军明, 李永绣. SiO2-CeO2复合氧化物的制备及抛光性能[J]. 无机化学学报, 2007, 23(4): 623-629. |
[15] | 韩磊, 李梅, 柳召刚, 王觅堂, 胡艳宏, 陶豹. 喷雾干燥法制备CeO2-SiO2复合抛光粉[J]. 中国粉体技术, 2015, 21(3): 16-20. |
[16] | Cheng, J., Huang, S., Li, Y., Wang, T.Q., Xie, L.L. and Lu, X.C. (2020) RE (La, Nd and Yb) Doped CeO2 Abrasive Particles for Chemical Me-chanical Polishing of Dielectric Materials: Experimental and Computational Analysis. Applied Surface Science, 506, Arti-cle ID: 144668. https://doi.org/10.1016/j.apsusc.2019.144668 |
[17] | 陈爱莲, 王婉莹, 马翔宇, 蔡文杰, 陈杨. Sm掺杂核-壳结构介孔SiO2@CeO2复合颗粒的制备和抛光性能[J]. 复合材料学报, 2020, 37(4): 919-926. |
[18] | Chen, A.L., Duan, Y.H., Mu, Z.Y., Cai, W.J. and Chen, Y. (2021) Meso-Silica/Erbium-Doped Ceria Binary Particles as Functionalized Abrasives for Photochemical Mechanical Polishing (PCMP). Applied Surface Science, 550, Article ID: 149353. https://doi.org/10.1016/j.apsusc.2021.149353 |
[19] | 贾慧灵. 铈基稀土抛光粉氟化行为的第一性原理研究[D]: [博士学位论文]. 北京: 北京化工大学, 2017. |
[20] | 马驰, 刘紫婷, 史颖, 刘立志, 宋立新, 王连慧, 史胜男. 氧化铈改性热塑性聚氨酯抛光材料的制备与性能[J]. 塑料科技, 2021, 49(7): 1-7. |
[21] | 马翔宇, 陈杨. 抛光压力和抛光垫硬度对PMMA-CeO2核壳复合磨粒抛光性能的影响(英文) [J]. 微纳电子技术, 2019, 56(10): 835-843. |
[22] | 陈爱莲, 李泽锋, 陈杨. 氧化硅内核结构对核/壳包覆型SiO2/CeO2复合颗粒抛光性能的影响[J]. 材料研究学报, 2017, 31(6): 429-436. |
[23] | Wang, W.Y., Chen, Y., Chen, A. and Ma, X.Y. (2020) Composite Particles with Dendritic Mesoporous-Silica Cores and Nano-Sized CeO2 Shells and Their Application to Abrasives in Chemical Mechanical Polishing. Materials Chemistry and Physics, 240, Article ID: 122279. https://doi.org/10.1016/j.matchemphys.2019.122279 |
[24] | Chen, Y., Lu, J.X. and Chen, Z.G. (2011) Preparation, Characterization and Oxide CMP Performance of Composite Polystyrene-Core Ceria-Shell Abrasives. Microelectronic Engineering, 88, 200-205.
https://doi.org/10.1016/j.mee.2010.10.019 |
[25] | Chen, A., Long, J., Li, Z. and Chen, Y. (2018) Copper Chemi-cal Mechanical Polishing Performances of Polystyrene/Ceria Hybrid Abrasives with a Core/Shell Structure. Journal of Inorganic and Organometallic Polymers and Materials, 28, 1655-1663. https://doi.org/10.1007/s10904-018-0840-9 |
[26] | Chen, Y., Zuo, C.Z., Li, Z.F. and Chen, A.L. (2018) Design of Ceria Grafted Mesoporous Silica Composite Particles for High-Efficiency and Damage-Free Oxide Chemical Mechanical Polishing. Journal of Alloys and Compounds, 736, 276-288. https://doi.org/10.1016/j.jallcom.2017.11.112 |
[27] | 周晨, 许向阳, 林顺天, 姚云飞. DND@CeO2核壳型磨料的制备及其在蓝宝石表面的抛光机理研究[J]. 矿冶工程, 2021, 41(2): 115-120. |
[28] | Murata, J., Yodogawa, K. and Ban, K. (2017) Polishing-Pad-Free Electrochemical Mechanical Polishing of Single-Crystalline SiC Surfaces Using Polyurethane-CeO2 Core-Shell Particles. International Journal of Machine Tools and Manufacture, 114, 1-7. https://doi.org/10.1016/j.ijmachtools.2016.11.007 |
[29] | Murata, J., Ueno, Y., Yodogawa, K. and Sugiura, T. (2016) Polymer/CeO2-Fe3O4 Multicomponent Core-Shell Particles for High-Efficiency Magnetic-Field-Assisted Polish-ing Processes. International Journal of Machine Tools and Manufacture, 101, 28-34. https://doi.org/10.1016/j.ijmachtools.2015.11.004 |
[30] | Kim, E., Hong, J., Hong, S., Kanade, C., Seok, H., Kim, H.-U. and Kim, T. (2021) Improvement of Oxide Removal Rate in Chemical Mechanical Polishing by Forming Oxygen Vacancy in Ceria Abrasives via Ultraviolet Irradiation. Materials Chemistry and Physics, 273, Article ID: 124967. https://doi.org/10.1016/j.matchemphys.2021.124967 |
[31] | Gao, B., Zhai, W.J., Zhai, Q. and Wang, C. (2021) Novel Photoelectrochemically Combined Mechanical Polishing Technology for Scratch-Free 4H-SiC Surface by Using CeO2-TiO2 Composite Photocatalysts and PS/CeO2 Core/Shell Abrasives. Applied Surface Science, 570, Article ID: 151141. https://doi.org/10.1016/j.apsusc.2021.151141 |