|
中国客运量的空间统计分析
|
Abstract:
基于2012~2020年我国客运量以及相应年末常驻人口数量,本文对我国各省份客运量的空间关联性进行了空间统计分析。通过全域空间自相关分析以及局域空间自相关分析,明确了我国客运量的重心分布情况:我国客运量高值集聚区域(热点)集中分布于华东地区和中南地区,而客运量低值集聚区域(冷点)集中分布于西北地区和东北地区。通过客运量Moran指数的变化,分析了2020年新冠疫情对于客运量变化产生的影响;对两年之间的客运量关系以及客运量与年末常驻人口数量进行了双变量空间自相关分析,得到了相应的结论。
Based on the passenger volume of China from 2012 to 2020 and the number of permanent residents at the end of the corresponding year, this paper conducts a spatial statistical analysis on the spatial correlation of passenger volume of each province in China. Through the global spatial autocorrelation analysis and local spatial autocorrelation analysis, the distribution of the center of gravity of passenger volume in China is clarified: the high value of passenger volume agglomeration area (hot spot) is concentrated in east China and central and southern China, while the low value of passenger volume agglomeration area (cold spot) is concentrated in northwest and northeast China. Through the change of passenger volume Moran index, the impact of COVID-19 on passenger volume change in 2020 is analyzed. The bivariate spatial autocorrelation analysis between passenger volume and resident population at the end of the two years is carried out and corresponding conclusions are obtained.
[1] | 乔舰, 谭佳宁. 中国邮政快递业收入区域差异研究[J]. 统计学与应用, 2021, 10(2): 345-353.
https://doi.org/10.12677/SA.2021.102034 |
[2] | 庞新怡, 富丽, 徐佳, 蒋青艳. 区域性金融风险向宏观系统性金融风险的空间传导路径——以江苏省为例[J]. 中国商论, 2019(9): 51-53. |
[3] | 廖沈美慧, 陈春娇, 张知青, 刘伟. 新冠肺炎疫情对地铁客运量的影响分析[J]. 城市轨道交通, 2021(1): 53-56. |
[4] | 贲莉莉. 营业性公路运输量统计口径变迁及测算方法探讨[J]. 江苏交通科技, 2015(3): 23-25. |
[5] | 联合早报. 国际航协: 疫情影响料持续多年2023年前难恢复至去年客运量[EB/OL].
http://sg.mofcom.gov.cn/article/dtxx/202005/20200502965307.shtml, 2020-05-16. |