全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于改进随机森林算法的上市公司信用风险实证分析
Empirical Analysis of Credit Risk of Listed Companies Based on Improved Random Forest Algorithm

DOI: 10.12677/SA.2022.111017, PP. 150-156

Keywords: 信用风险评估,随机森林,特征递归消除法
Credit Risk Assessment
, Random Forest, Feature Recursive Elimination

Full-Text   Cite this paper   Add to My Lib

Abstract:

近年来随着金融市场的不断发展,贷前识别风险企业、有效进行信贷风险控制越来越重要。本文主要研究企业信用风险评估的问题,通过合理的模型选择及模型优化,提升模型识别问题企业的能力。本文首先基于实际情况选择了合理的模型评估指标体系,通过优化后的随机森林算法,将特征选取与模型训练过程相结合,利用该模型以我国上市公司数据为例,进行了实证检验,并横向对比常见评估模型的数据表现,实验结果表明模型有较好的预测效果。
With the continuous development of the financial market in recent years, it has become more and more important to identify risky enterprises before lending and effectively control credit risks. This paper mainly studies the problem of enterprise credit risk assessment, and improves the ability of the model to identify problem enterprises through reasonable model selection and model optimization. This paper first selects a reasonable model evaluation index system based on the actual situation, and combines the feature selection and model training process through the optimized random forest algorithm. Comparing the data performance of common evaluation models, the experimental results show that the model has better prediction effect.

References

[1]  毛子林, 刘姜. 基于机器学习方法的信用风险评估综述[J]. 经济研究导刊, 2021(23): 117-119.
[2]  张更生, 蒯本江, 韦月斌. 试论建立信贷风险预警体系[J]. 财经理论与实践, 1993(3): 45-47.
[3]  张雷, 王家琪, 费职友, 罗帅, 隋京岐. 基于RF-SMOTE-XGboost下的银行用户个人信用风险评估模型[J]. 现代电子技术, 2020, 43(16): 76-81.
[4]  周永圣, 崔佳丽, 周琳云, 孙红霞, 刘淑芹. 基于改进的随机森林模型的个人信用风险评估研究[J]. 征信, 2020, 38(1): 28-32.
[5]  吴辰文, 梁靖涵, 王伟, 李长生. 基于递归特征消除方法的随机森林算法[J]. 统计与决策, 2017(21): 60-63.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133