全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Study of Differential Gene Expression and Core Canonical Pathways Involved in Rhenium Ligand Treated Epithelial Mesenchymal Transition (EMT) Induced A549 Lung Cancer Cell Lines by INGENUITY Software System

DOI: 10.4236/cmb.2022.121002, PP. 12-19

Keywords: Rhenium Compounds, Lung Cancer, Epithelial

Full-Text   Cite this paper   Add to My Lib

Abstract:

Rhenium compounds have shown anti-cancer properties against many different types of cancer cell lines; however, the cellular signaling mechanisms involved in the cytotoxic properties of rhenium-based compounds were never deciphered or reported. In this manuscript, we report the results of an investigation done by RNA sequencing of rhenium treated A549 lung cancer cell lines along with an untreated vehicular control, analyzed by the Ingenuity Pathway Analysis (IPA) software system to decipher the core canonical pathways involved in rhenium induced cancer cell death. A549 EMT lung cancer cell lines were treated with rhenium ligand (Tricarbonylperrhenato(bathocuproine)rhenium(I), PR7) for seven days along with vehicular control. RNA was isolated from the treated and control cells and sequenced by a commercial company (PrimBio Corporation). The RNA sequencing data was analyzed by the INGNUITY software system and the core canonical pathways involved with differential gene expression were identified. Our report is showing that there are several cellular pathways involved in inducing cell death by rhenium-based compound PR7.

References

[1]  Banerjee, H.N., Boston, A., Barfield, A., Stevenson, M., Sarkar, F.H., Giri, D., Winstead, A., Krause, J.A. and Mandal, S.K. (2016) A Study of the Effects of Novel Rhenium Compounds on Pancreatic and Prostate Cancer Cell Lines. International Journal of Scientific Research, 5, Article ID: 10501.
[2]  Krauss, C., Aurelius, C., Johnston, K., Bartlette, V., Gavin, S., Cuffee, J., Banerjee, S., Wiseniewsky, S., Mandal, S. and Banerjee, H.N. (2020) An Investigation to Study the Role of Novel Rhenium Compounds on Endometrial Uterine Cancer Cell Lines. Journal of Cancer Research Updates, 9, 102-106.
https://doi.org/10.30683/1929-2279.2020.09.12
[3]  Cheng, L. and Tong, Q. (2021) Interaction of FLNA and ANXA2 Promotes Gefitinib Resistance by Activating the Wnt Pathway in Non-Small-Cell Lung Cancer. Molecular and Cellular Biochemistry, 476, 3563-3575.
https://doi.org/10.1007/s11010-021-04179-1
[4]  Shi, J.Q., Wang, B., Cao, X.Q., Wang, Y.X., Cheng, X., Jia, C.L., Wen, T., Luo, B.J. and Liu, Z.D. (2020) Circular RNA_LARP4 Inhibits the Progression of Non-Small-Cell Lung Cancer by Regulating the Expression of SMAD7. European Review for Medical and Pharmacological Sciences, 24, 1863-1869.
https://doi.org/10.26355/eurrev_202002_20364
[5]  Yue, X., Zhao, Y., Liu, J., Zhang, C., Yu, H., Wang, J., Zheng, T., Liu, L., Li, J., Feng, Z. and Hu, W. (2015) BAG2 Promotes Tumorigenesis through Enhancing Mutant p53 Protein Levels and Function. eLife, 4, Article ID: e08401.
https://doi.org/10.7554/eLife.08401
[6]  Han, B., Yang, Y., Chen, J., He, X., Lyu, N. and Yan, R. (2019) PRSS23 Knockdown Inhibits Gastric Tumorigenesis through EIF2 Signaling. Pharmacological Research, 142, 50-57.
https://doi.org/10.1016/j.phrs.2019.02.008
[7]  Tanaka, I., Sato, M., Kato, T., Goto, D., Kakumu, T., Miyazawa, A., Yogo, N., Hase, T., Morise, M., Sekido, Y., Girard, L., Minna, J.D., Byers, L.A., Heymach, J.V., Coombes, K.R., Kondo, M. and Hasegawa, Y. (2018) eIF2β, a Subunit of Translation-Initiation Factor EIF2, Is a Potential Therapeutic Target for Non-Small Cell Lung Cancer. Cancer Science, 109, 1843-1852.
https://doi.org/10.1111/cas.13602
[8]  Kalainayakan, S.P., FitzGerald, K.E., Konduri, P.C., Vidal, C. and Zhang, L. (2018) Essential Roles of Mitochondrial and Heme Function in Lung Cancer Bioenergetics and Tumorigenesis. Cell & Bioscience, 8, Article No. 56.
https://doi.org/10.1186/s13578-018-0257-8
[9]  Lissanu Deribe, Y., Sun, Y., Terranova, C., Khan, F., Martinez-Ledesma, J., Gay, J., Gao, G., Mullinax, R.A., Khor, T., Feng, N., Lin, Y.H., Wu, C.C., Reyes, C., Peng, Q., Robinson, F., Inoue, A., Kochat, V., Liu, C.G., Asara, J.M., Moran, C., et al. (2018) Mutations in the SWI/SNF Complex Induce a Targetable Dependence on Oxidative Phosphorylation in Lung Cancer. Nature Medicine, 24, 1047-1057.
https://doi.org/10.1038/s41591-018-0019-5
[10]  Lodola, A., Giorgio, C., Incerti, M., Zanotti, I. and Tognolini, M. (2017) Targeting Eph/Ephrin System in Cancer Therapy. European Journal of Medicinal Chemistry, 142, 152-162.
https://doi.org/10.1016/j.ejmech.2017.07.029
[11]  Bai, H., Duan, J., Li, C., Xie, W., Fang, W., Xu, Y., Wang, G., Wan, R., Sun, J., Xu, J., Wang, X., Fei, K., Zhao, Z., Cai, S., Zhang, L., Wang, J. and Wang, Z. (2020) EPHA Mutation as a Predictor of Immunotherapeutic Efficacy in Lung Adenocarcinoma. Journal for Immunotherapy of Cancer, 8, Article ID: e001315.
https://doi.org/10.1136/jitc-2020-001315
[12]  Pratt, R.L. and Kinch, M.S. (2002) Activation of the EphA2 Tyrosine Kinase Stimulates the MAP/ERK Kinase Signaling Cascade. Oncogene, 21, 7690-7699.
https://doi.org/10.1038/sj.onc.1205758
[13]  Zhang, X., Sai, B., Wang, F., Wang, L., Wang, Y., Zheng, L., Li, G., Tang, J. and Xiang, J. (2019) Hypoxic BMSC-Derived Exosomal miRNAs Promote Metastasis of Lung Cancer Cells via STAT3-Induced EMT. Molecular Cancer, 18, Article No. 40.
https://doi.org/10.1186/s12943-019-0959-5
[14]  Liu, J., Zhong, X., Li, J., Liu, B., Guo, S., Chen, J., Tan, Q., Wang, Q., Ma, W., Wu, Z., Wang, H., Hou, M., Zhang, H.T. and Zhou, Q. (2012) Screening and Identification of Lung Cancer Metastasis-Related Genes by Suppression Subtractive Hybridization. Thoracic Cancer, 3, 207-216.
https://doi.org/10.1111/j.1759-7714.2011.00092.x
[15]  Zhou, J., Zhang, S., Chen, Z., He, Z., Xu, Y. and Li, Z. (2019) CircRNA-ENO1 Promoted Glycolysis and Tumor Progression in Lung Adenocarcinoma through Upregulating Its Host Gene ENO1. Cell Death & Disease, 10, Article No. 885.
https://doi.org/10.1038/s41419-019-2127-7
[16]  Kuroda, K., Takenoyama, M., Baba, T., Shigematsu, Y., Shiota, H., Ichiki, Y., Yasuda, M., Uramoto, H., Hanagiri, T. and Yasumoto, K. (2010) Identification of Ribosomal Protein L19 as a Novel Tumor Antigen Recognized by Autologous Cytotoxic T Lymphocytes in Lung Adenocarcinoma. Cancer Science, 101, 46-53.
https://doi.org/10.1111/j.1349-7006.2009.01351.x
[17]  Dai, D., Shi, R., Han, S., Jin, H. and Wang, X. (2020) Weighted Gene Coexpression Network Analysis Identifies Hub Genes Related to KRAS Mutant Lung Adenocarcinoma. Medicine, 99, Article ID: e21478.
https://doi.org/10.1097/MD.0000000000021478
[18]  Kidokoro, Y., Sakabe, T., Haruki, T., Kadonaga, T., Nosaka, K., Nakamura, H. and Umekita, Y. (2020) Gene Expression Profiling by Targeted RNA Sequencing in Pathological Stage I Lung Adenocarcinoma with a Solid Component. Lung Cancer, 147, 56-63.
https://doi.org/10.1016/j.lungcan.2020.06.035
[19]  Fu, X.Y., Zhou, W.B. and Xu, J. (2020) TM4SF1 Facilitates Non-Small Cell Lung Cancer Progression through Regulating YAP-TEAD Pathway. European Review for Medical and Pharmacological Sciences, 24, 1829-1840.
[20]  Deng, H., Huang, Y., Wang, L. and Chen, M. (2020) High Expression of UBB, RAC1, and ITGB1 Predicts Worse Prognosis among Nonsmoking Patients with Lung Adenocarcinoma through Bioinformatics Analysis. BioMed Research International, 2020, Article ID: 2071593.
https://doi.org/10.1155/2020/2071593
[21]  Zhang, Y., Huang, Y.X., Wang, D.L., Yang, B., Yan, H.Y., Lin, L.H., Li, Y., Chen, J., Xie, L.M., Huang, Y.S., Liao, J.Y., Hu, K.S., He, J.H., Saw, P.E., Xu, X. and Yin, D. (2020) LncRNA DSCAM-AS1 Interacts with YBX1 to Promote Cancer Progression by Forming a Positive Feedback Loop That Activates FOXA1 Transcription Network. Theranostics, 10, 10823-10837.
https://doi.org/10.7150/thno.47830

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133