全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Mechanical and Electronic Properties of Ternary Rare-Earth Hexaboride LaxNd8-xB6 (x = 0, 1, 7, 8) Materials

DOI: 10.4236/mnsms.2022.121001, PP. 1-11

Keywords: Rare-Earth Hexaboride, Lattice Constant, PDOS, Charge Density

Full-Text   Cite this paper   Add to My Lib

Abstract:

We have carried out density functional theory to study the lattice constants and electronic properties of LaB6, NdB6, Nd-doped LaB6, and La-doped NdB6. The lattice constant, intra-octahedral bond, inter-octahedral boron bond, and positional parameter (z) were calculated for LaB6, La7Nd1B6, La1Nd7B6, and NdB6. Our results show that the doped Nd increases the lattice constant of La7Nd1B6. Likewise, La-doping leads to an increase in the lattice constant of the La1Nd7B6. The PDOSs of LaB6, B of LaB6, La7Nd1B6, B of La7Nd1B6, La1Nd7B6, B of La1Nd7B6, NdB6, and B of NdB6 were calculated. La d-electron bands cross the Fermi energy, showing classical conductor behavior. The charge density results indicate that light and dark colors show high and low-intensity zones, respectively. La1Nd7B6 has a low-density region and LaB6 has a high-density region. The LaB6 midpoint has strong charge density peaks. Weak peaks are also observed for La1Nd7B6. Thus, ternary REB6 has good potential for many applications. This article reports an investigation of the electronic features and structural parameters of binary and ternary hexaborides.

References

[1]  Zeng, X., Ye, Y., Zou, S., Gou, Q., Wen, Y. and Ou, P. (2017) First-Principles Study of the Nonlinear Elasticity of Rare-Earth Hexaborides REB6 (RE = La, Ce). Crystals, 7, 320.
https://doi.org/10.3390/cryst7110320
[2]  Ji, X.H., Zhang, Q.Y., Xu, J.Q. and Zhao, Y.M. (2011) Rare-Earth Hexaborides Nanostructures: Recent Advances in Materials, Characterization and Investigations of Physical Properties. Progress in Solid State Chemistry, 39, 51-69.
https://doi.org/10.1016/j.progsolidstchem.2011.04.001
[3]  Liu, H., Zhang, X., Xiao, Y. and Zhang, J. (2018) The Electronic Structures and Work Functions of (100) Surface of Typical Binary and Doped REB6 Single Crystals. Applied Surface Science, 434, 613-619.
https://doi.org/10.1016/j.apsusc.2017.10.233
[4]  Liu, H., Zhang, X., Ning, S., Xiao, Y. and Zhang, J. (2017) The Electronic Structure and Work Functions of Single Crystal LaB6 Typical Crystal Surfaces. Vacuum, 143, 245-250.
https://doi.org/10.1016/j.vacuum.2017.06.029
[5]  Uijttewaal, M.A., De Wijs, G.A. and De Groot, R.A. (2006) Ab Initio and Work Function and Surface Energy Anisotropy of LaB6. The Journal of Physical Chemistry B, 110, 18459-18465.
https://doi.org/10.1021/jp063347i
[6]  Yu, Y., Wang, S., Li, W., Chen, H. and Chen, Z. (2018) Synthesis of Single- Crystalline Lanthanum Hexaboride Nanocubes by a Low Temperature Molten Salt Method. Materials Chemistry and Physics, 207, 325-329.
https://doi.org/10.1016/j.matchemphys.2017.12.081
[7]  Zhang, M., et al. (2008) A Low-Temperature Route for the Synthesis of Nanocrystalline LaB6. Journal of Solid State Chemistry, 181, 294-297.
https://doi.org/10.1016/j.jssc.2007.12.011
[8]  Yu, Y., Wang, S., Li, W. and Chen, Z. (2018) Low Temperature Synthesis of LaB6 Nanoparticles by a Molten Salt Route. Powder Technology, 323, 203-207.
https://doi.org/10.1016/j.powtec.2017.09.049
[9]  Dou, Z.-H., et al. (2015) A New Method of Preparing NdB6 Ultra-Fine Powders. Rare Metals, 1-7.
https://doi.org/10.1007/s12598-015-0596-0
[10]  Yadav, K.K., Sreekanth, M., Ghosh, S., Ganguli, A.K. and Jha, M. (2020) Excellent Field Emission from Ultrafine Vertically Aligned Nanorods of NdB6 on Silicon Substrate. Applied Surface Science, 526, Article ID: 146652.
https://doi.org/10.1016/j.apsusc.2020.146652
[11]  Wang, G., Brewer, J.R., Chan, J.Y., Diercks, D.R. and Cheung, C.L. (2009) Morphological Evolution of Neodymium Boride Nanostructure Growth by Chemical Vapor Deposition. The Journal of Physical Chemistry C, 113, 10446-10451.
https://doi.org/10.1021/jp901717h
[12]  Ali, N. and Woods, S.B. (1983) Low Temperature Thermoelectric Power of LaB6, PrB6 and NdB6. Solid State Communications, 46, 33-35.
https://doi.org/10.1016/0038-1098(83)90024-8
[13]  Ding, Q., Zhao, Y., Xu, J. and Zou, C. (2007) Large-Scale Synthesis of Neodymium Hexaboride Nanowires by Self-Catalyst. Solid State Communications, 141, 53-56.
https://doi.org/10.1016/j.ssc.2006.10.001
[14]  Xu, J., et al. (2013) Excellent Field-Emission Performances of Neodymium Hexaboride (NdB6) Nanoneedles with Ultra-Low Work Functions. Advanced Functional Materials, 23, 5038-5048.
https://doi.org/10.1002/adfm201301980
[15]  Tsuji, S., Endo, T., Kobayashi, S., Yoshino, Y., Sera, M. and Iga, F. (2002) Rapid Suppression of the Metamagnetic Transition for H 111 in NdB6 by La Doping. Journal of the Physical Society of Japan, 71, 2994-3002.
https://doi.org/10.1143/JPSJ.71.2994
[16]  Liang, C.-L., Zhang, X., Zhang, J.-X., Zhang, F.-X. and Wang, Y. (2015) Preparation and Property of La1-xNdxB6 Cathode Material. Journal of Inorganic Materials, 30, 363-368.
https://doi.org/10.15541/jim20140471
[17]  Li, Q., et al. (2015) Single-Crystalline LaxNd1-xB6 Nanowires: Synthesis, Characterization and Field Emission Performance. Journal of Materials Chemistry C, 3, 7476-7482.
https://doi.org/10.1039/C5TC00804B
[18]  Giannozzi, P., et al. (2017) Advanced Capabilities for Materials Modelling with Quantum ESPRESSO. Journal of Physics: Condensed Matter, 29, Article ID: 465901.
https://doi.org/10.1088/1361-648X/aa8f79
[19]  Hobbs, D., Kresse, G. and Hafner, J. (2000) Fully Unconstrained Noncollinear Magnetism within the Projector Augmented-Wave Method. Physical Review B, 62, 11556-11570.
https://doi.org/10.1103/PhysRevB.62.11556
[20]  Hacker Jr., H. and Lin, M.S. (1968) Magnetic Susceptibility of Neodymium Hexaboride. Solid State Communications, 6, 379-381.
https://doi.org/10.1016/0038-1098(68)90161-0
[21]  Tekoglu, E., Agaogullari, D., Yürektürk, Y., Bulut, B. and Ovecoglu, M.L. (2018) Characterization of LaB6 Particulate-Reinforced Eutectic Al-12.6 wt% Si Composites Fabricated via Mechanical Alloying and Spark Plasma Sintering. Powder Technology, 340, 473-483.
https://doi.org/10.1016/j.powtec.2018.09.055
[22]  Xiao, Y., Zhang, X., Li, R., Liu, H., Zhou, N. and Zhang, J. (2021) Single-Crystal LaB6 Field Emission Array is Rapidly Fabricated by Ultraviolet Femtosecond Laser and Its Field Electronic Structure Characteristics. Vacuum, 184, Article ID: 109987.
https://doi.org/10.1016/j.vacuum.2020.109987
[23]  Soloviova, T.O., Karasevska, O.P., Vleugels, J. and Loboda, P.I. (2021) Thermal Dependent Properties of LaB6-MeB2 Eutectic Composites. Ceramics International, 47, 17667-17677.
https://doi.org/10.1016/j.ceramint.2021.03.086
[24]  Ivashchenko, V.I., Turchi, P.E.A., Shevchenko, V.I., Medukh, N.R., Leszczynski, J. and Gorb, L. (2018) Electronic, Thermodynamics and Mechanical Properties of LaB6 from First-Principles. Physica B: Condensed Matter, 531, 216-222.
https://doi.org/10.1016/j.physb.2017.12.044
[25]  Otani, S., Honma, S., Yajima, Y. and Ishizawa, Y. (1993) Preparation of LaB6 Single Crystals from a Boron-Rich Molten Zone by the Floating Zone Method. Journal of Crystal Growth, 126, 466-470.
https://doi.org/10.1016/0022-0248(93)90052-X
[26]  Bai, L., Ma, N. and Liu, F. (2009) Structure and Chemical Bond Characteristics of LaB6. Physica B: Condensed Matter, 404, 4086-4089.
https://doi.org/10.1016/j.physb.2009.07.189
[27]  Ghimire, M.P., Rai, D.P., Patra, P.K., Mohanty, A.K. and Thapa, R.K. (2012) Study of Bulk Modulus, Volume, Energy, Lattice Parameters and Magnetic Moments in Rare Earth Hexaborides Using Density Functional Theory. Journal of Physics: Conference Series, 377, 12084.
https://doi.org/10.1088/1742-6596/377/1/012084
[28]  Chen, C.-H., Aizawa, T., Iyi, N., Sato, A. and Otani, S. (2004) Structural Refinement and Thermal Expansion of Hexaborides. Journal of Alloys and Compounds, 366, L6-L8.
https://doi.org/10.1016/S0925-8388(03)00735-7
[29]  Simsek, T., Avar, B., Ozcan, S. and Kalkan, B. (2019) Nano-Sized Neodymium Hexaboride: Room Temperature Mechanochemical Synthesis. Physica B: Condensed Matter, 570, 217-223.
https://doi.org/10.1016/j.physb.2019.06.047
[30]  Han, W., Zhang, H., Chen, J., Zhao, Y., Fan, Q. and Li, Q. (2015) Synthesis of Single-Crystalline NdB 6 Submicroawls via a Simple Flux-Controlled Self-Catalyzed Method. RSC Advances, 5, 12605-12612.
https://doi.org/10.1039/C4RA13129K
[31]  Blomberg, M.K., Merisalo, M.J., Korsukova, M.M. and Gurin, V.N. (1995) Single-Crystal X-Ray Diffraction Study of NdB6, EuB6 and YbB6. Journal of Alloys and Compounds, 217, 123-127.
https://doi.org/10.1016/0925-8388(94)01313-7
[32]  Fan, Q.H., et al. (2013) Field Emission from One-Dimensional Single-Crystalline NdB6 Nanowires. Journal of Rare Earths, 31, 145-148.
https://doi.org/10.1016/S1002-0721(12)60248-8
[33]  Xiao, L., et al. (2012) Origins of High Visible Light Transparency and Solar Heat- Shielding Performance in LaB6. Applied Physics Letters, 101, 41913.
https://doi.org/10.1063/1.4733386
[34]  Hasan, M., Sugo, H. and Kisi, E. (2013) Low Temperature Carbothermal and Boron Carbide Reduction Synthesis of LaB6. Journal of Alloys and Compounds, 578, 176-182.
https://doi.org/10.1016/j.jallcom.2013.05.008
[35]  Sandeep, M.P., Rai, D.P., Patra, P.K., Mohanty, A.K. and Thapa, R.K. (2012) Study of Bulk Modulus, Volume, Energy, Lattice Parameters and Magnetic Moments in Rare Earth Hexaborides Using Density Functional Theory. Journal of Physics: Conference Series, 377, 12084.
https://doi.org/10.1088/1742-6596/377/1/012084
[36]  Hasegawa, A. and Yanase, A. (1977) Energy Bandstructure and Fermi Surface of LaB6 by a Self-Consistent APW Method. Journal of Physics F: Metal Physics, 7, 1245-1260.
https://doi.org/10.1088/0305-4608/7/7/023
[37]  Mackinnon, I., Alarco, J. and Talbot, P. (2013) Metal Hexaborides with Sc, Ti or Mn. Modeling and Numerical Simulation of Material Science, 3, 158-169.
https://doi.org/10.4236/mnsms.2013.34023
[38]  Bao, L.-H., Zhang, J.-X., Zhang, N., Li, X.-N. and Zhou, S.-L. (2012) In Situ (LaxGd1-x)B6 Cathode Materials Prepared by the Spark Plasma Sintering Technique. Physica Scripta, 85, 35710.
https://doi.org/10.1088/0031-8949/85/03/035710
[39]  Chao, L., Bao, L., Shi, J., Wei, W., Tegus, O. and Zhang, Z. (2015) The Effect of Sm-Doping on Optical Properties of LaB6 Nanoparticles. Journal of Alloys and Compounds, 622, 618-621.
https://doi.org/10.1016/j.jallcom.2014.10.141
[40]  Hasan, M.M., Cuskelly, D., Sugo, H. and Kisi, E.H. (2015) Low Temperature Synthesis of Low Thermionic Work Function (LaxBa1-x)B6. Journal of Alloys and Compounds, 636, 67-72.
https://doi.org/10.1016/j.jallcom.2015.02.105
[41]  Luo, K., et al. (2016) Crystal Structures and Mechanical Properties of M (Mg, Sr, Ba, La) xCa1-xB6 Solid Solution: A First Principles Study. Ceramics International, 42, 6632-6639.
https://doi.org/10.1016/j.ceramint.2016.01.002
[42]  Qin, P., Xu, C. and Chen, D. (2012) Electronic and Optical Properties of RB6 (R = La, Nd): A Computer Aided Design. Advanced Materials Research, 571, 239-242.
https://doi.org/10.4028/www.scientific.net/AMR.571.239

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133