The
accelerated depletion of oil reserves and the often exorbitant cost of fossil
fuels contribute to the development of fuels from renewable sources. The
objective of this work is to analyze the influence of the properties of
renewable fuels on their evaporation in natural convection, their combustion and
their use in internal combustion engines. A summary of the various numerical
and experimental works from the literature has been presented in this work.
This work focuses on the numerical modelling of the natural convection
evaporation of an isolated drop of a liquid fuel in natural convection. The
transfers in the liquid and vapour phases are described by the conservation
equations of mass and species, momentum and
energy. The main feature of this work is the consideration of advection,
azimuthal angle and thickness of the vapour phase of the drop during
evaporation of the drop.
References
[1]
Faeth, G.M. (1983) Evaporation and Combustion of Sprays. Progress in Energy and Combustion Science, 9, 1-76. https://doi.org/10.1016/0360-1285(83)90005-9
[2]
Sirignano, W.A. (1983) Fuel Droplet Vaporization and Spray Combustion Theory. Progress in Energy and Combustion Science, 9, 291-322.
https://doi.org/10.1016/0360-1285(83)90011-4
[3]
Law, C. (1982) Recent Advances in Droplet Vaporization and Combustion. Prog Energy Combust, 8, 171-201. https://doi.org/10.1016/0360-1285(82)90011-9
[4]
Dgheim, J. (2001) Contribution à l’étude de l’évaporation et de la combustion de gouttes de carburants liquides. Université de Perpignan Via Domitia, Perpignan.
[5]
Lazard, R.S. and Faeth, G. (1971) Bipropellant Droplet Combustion in the Vicinity of the Critical Point. Symposium (International) on Combustion, 13, 801-811.
https://doi.org/10.1016/S0082-0784(71)80082-6
[6]
Faeth, G. (1977) Current Status of Droplet and Liquid Combustion. Progress in Energy and Combustion Science, 3, 191-224.
https://doi.org/10.1016/0360-1285(77)90012-0
[7]
Mauduit, J. (1992) Contribution à l’étude de la vaporisation et de la combustion de gouttes isolées, introduction aux effets des hautes pressions. Université d’Orléans, Orléans.
[8]
Abramzon, B. and Sirignano, W.A. (1989) Droplet Vaporization Model for Spray Combustion Calculations. International Journal of Heat and Mass Transfer, 32, 1605-1618. https://doi.org/10.1016/0017-9310(89)90043-4
[9]
Bencherif, M. (2014) Contribution à l’étude des interactions combustion turbulence dans les moteurs à combustion interne. Université des Sciences et de la Technologie d’Oran “Mohamed Boudiaf”, Bir El Djir.
[10]
Merouane, H. (2013) étude de la vaporisation des gouttes de combustibles liquides en écoulement sous effet thermique. Université des Sciences et de la Technologie d’Oran “Mohamed Boudiaf”, Bir El Djir.
[11]
Yuge, T. (1960) Experiment on Heat Transfer from Spheres Including Natural and Forced Convection. Journal of Heat Transfer, 82, 214-220.
https://doi.org/10.1115/1.3679912
[12]
Doué, N. (2005) Modélisation de l’évaporation de gouttes multi-composants. école nationale supérieure de l’aéronautique et de l’espace, Toulouse,.
[13]
Khiari, K. (2016) Contribution à l’étude des propriétés thermo-physiques des biocarburants de seconde génération et leur influence sur le comportement des moteurs. Ecole des Mines de Nantes, Nantes.
[14]
Haywood, R., Nafziger, R. and Renksizbulut, M. (1989) A Detailed Examination of Gas and Liquid Phase Transient Processes in Convective Droplet Evaporation. Journal of Heat Transfer, 111, 495-502. https://doi.org/10.1115/1.3250704
[15]
Nje-Nje, C. (2000) Etude numérique de l’évaporation instationnaire d’un nuage de gouttes multicomposants. Université de ROUEN, Mont-Saint-Aignan.
[16]
Daho, T. (2008) Contribution à l’étude des conditions optimales de combustion des huiles végétales dans les moteurs diesel et sur les bruleurs: Cas de l’huile de coton. Université de Ouagadougou, Ouagadougou.
[17]
Wang, F., Yao, J., Yang, S., Liu, R. and Jin, J. (2017) A New Stationary Droplet Evaporation Model and Its Validation. Chinese Journal of Aeronautics, 30, 1407-1416. https://doi.org/10.1016/j.cja.2017.06.012
[18]
Sazhin, S.S. (2017) Modelling of Fuel Droplet Heating and Evaporation: Recent Results and Unsolved Problems. Fuel, 196, 69-101.
https://doi.org/10.1016/j.fuel.2017.01.048
[19]
Dgheim, J., Al Maarrawi, R., Abdallah, M. and Nasr, N. (2020) New Investigation of the Evaporation of Multicomponent Hydrocarbons Liquid Droplets in Rotatory Forced Convection.
[20]
Daif, A., Bouaziz, M., Bresson, J. and Grisenti, M. (1999) Surface Temperature of Hydrocarbon Droplet in Evaporation. Journal of Thermophysics and Heat Transfer, 13, 553-556. https://doi.org/10.2514/2.6479
[21]
Bouaziz, M., Grisenti, M., Dedies, R. and Zeghmati, B. (2002) Heat and Mass Transfer Correlation for a Porous Sphere Saturated with Liquid Evaporated in Natural Convection Flow. Chemical Engineering and Processing: Process Intensification, 41, 539-549. https://doi.org/10.1016/S0255-2701(01)00174-X
[22]
Dgheim, J. and Zeghmati, B. (2005) Heat and Mass Transfer Investigation of Hydrocarbon Droplet Evaporation under Rotatory Movement. Chinese Physics Letters, 22, 2933-2935. https://doi.org/10.1088/0256-307X/22/11/057
[23]
Sazhin, S.S., Qubeissi, M.A., Kolodnytska, R., Elwardany, A.E., Nasiri, R. and Heikal, M.R. (2013) Modelling of Biodiesel Fuel Droplet Heating and Evaporation. International Heat Transfer Conference 15, Kyoto, 10-15 August 2014, 2403-2414.
https://doi.org/10.1615/IHTC15.evp.008936
[24]
Dgheim, J., Chesneau, X., Pietri, L. and Zeghmati, B. (2001) Etude numérique des transferts lors de la combustion en convection naturelle d’une goutte de carburant liquide.
[25]
Dgheim, J., Abdallah, M. and Nasr, N. (2017) Enhanced Evaporation of Droplet of Ternary Component under the Effect of Thermo-Physical and Transport Properties Variability. Arabian Journal for Science and Engineering, 43, 2181-2194.
https://doi.org/10.1007/s13369-017-2561-8
[26]
Daho, T., Vaitilingom, G., Sanogo, O., Ouiminga, S.K., Segda, B.G., Valette, J., et al. (2012) Model for Predicting Evaporation Characteristics of Vegetable Oils Droplets Based on Their Fatty Acid Composition. International Journal of Heat and Mass Transfer, 55, 2864-2871. https://doi.org/10.1016/j.ijheatmasstransfer.2012.01.048
[27]
Dgheim, J., Abdallah, M., Habchi, R. and Zakhia, N. (2012) Heat and Mass Transfer Investigation of Rotating Hydrocarbons Droplet Which Behaves as a Hard Sphere. Applied Mathematical Modelling, 36, 2935-2946.
https://doi.org/10.1016/j.apm.2011.09.078
[28]
Sazhin, S.S., Al Qubeissi, M. and Xie, J.F. (2014) Two Approaches to Modelling the Heating of Evaporating Droplets. International Communications in Heat and Mass Transfer, 57, 353-356. https://doi.org/10.1016/j.icheatmasstransfer.2014.08.004
[29]
Chesneau, X. (1994) Vaporisation et combustion de gouttes isolées de combustibles liquides. Influence de la pression. Thèse de Doctorat, Université d’Orléans, Orléans.
[30]
Chauveau, C., Chesneau, X. and Gijkalp, I. (1995) High Pressure Vaporization and Burning of Methanol Droplets in Reduced Gravity. Advances in Space Research, 16, 157-160. https://doi.org/10.1016/0273-1177(95)00152-5
[31]
Chahine, A.J. (2017) Contribution à l’étude numérique et expérimentale de l’évaporation and la combustion des gouttes d’hydrocarbures liquides en rotation. Université Libanaise, Beirut.
[32]
Dabilgou, T., Dgheim, J., Chesneau, X. and Koulidiati, J. (2021) Evaporation Improvement in Natural Convection of Heptane Liquid Droplet. International Journal of Current Research, 13, 16084-16101.
[33]
Qubeissi, M.A., Sazhin, S.S., Crua, C., Turner, J. and Heikal, M.R. (2015) Modelling of Biodiesel Fuel Droplet Heating and Evaporation: Effects of Fuel Composition. Fuel, 154, 308-318. https://doi.org/10.1016/j.fuel.2015.03.051
[34]
Habibullah, M., Masjuki, H.H., Kalam, M.A., Rizwanul Fattah, I.M., Ashraful, A.M. and Mobarak, H.M. (2014) Biodiesel Production and Performance evaluation of Coconut, Palm and Their Combined Blend with Diesel in a Single-Cylinder Diesel Engine, 87, 250-257. https://doi.org/10.1016/j.enconman.2014.07.006
[35]
Hubbard, G.L., Denny, V.E. and Mills, A.F. (1975) Droplet Evaporation: Effects of Transients and Variable Properties. International Journal of Heat and Mass Transfer, 18, 1003-1008. https://doi.org/10.1016/0017-9310(75)90217-3
[36]
Tonini, S. and Cossali, G. (2012) An Analytical Model of Liquid Drop Evaporation in Gaseous Environment. International Journal of Thermal Sciences, 57, 45-53.
https://doi.org/10.1016/j.ijthermalsci.2012.01.017
[37]
Maqua, C., Castanet, G. and Lemoine, F. (2008) Bicomponent Droplets Evaporation: Temperature Measurements and Modelling. Fuel, 87, 2932-2942.
https://doi.org/10.1016/j.fuel.2008.04.021
[38]
Abramzon, B. and Sazhin, S.S. (2006) Convective Vaporization of a Fuel Droplet with Thermal Radiation Absorption. Fuel, 85, 32-46.
https://doi.org/10.1016/j.fuel.2005.02.027
[39]
Kitano, T., Nishio, J., Kurose, R. and Komori, S. (2014) Effects of Ambient Pressure, Gas Temperature and Combustion Reaction on Droplet Evaporation. Combustion and Flame, 161, 551-564. https://doi.org/10.1016/j.combustflame.2013.09.009
[40]
Maqua, C., Castanet, G., Grisch, F., Lemoine, F., Kristyadi, T. and Sazhin, S.S. (2008) Monodisperse Droplet Heating and Evaporation: Experimental Study and Modelling. International Journal of Heat and Mass Transfer, 51, 3932-3945.
https://doi.org/10.1016/j.ijheatmasstransfer.2007.12.011
[41]
Dgheim, J., Chahine, A. and Nahed, J. (2018) Investigation on the Droplet Combustion in Rotatory Natural Convection. Journal of King Saud University: Science, 31, 937-945. https://doi.org/10.1016/j.jksus.2018.02.007
[42]
Merouane, H. and Bounif, A. (2010) Theoretical and Numerical Analysis of Fuel Droplet Vaporisation at high Temperatures. WSEAS Transactions on Heat and Mass Transfer, 5, 189-196.
[43]
Pinheiro, A.P., Vedovoto, J.M., da Silveira Neto, A. and van Wachem, B.G. (2019) Ethanol Droplet Evaporation: Effects of Ambient Temperature, Pressure and Fuel Vapor Concentration. International Journal of Heat and Mass Transfer, 143, Article ID: 118472. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118472
[44]
Raghavan, V. (2019) Numerical Modeling of Evaporation and Combustion of Isolated Liquid Fuel Droplets: a Review. Journal of the Indian Institute of Science, 99, 5-23.
https://doi.org/10.1007/s41745-019-0097-5
[45]
Belkhelfa, Y. (2008) étude du comportement dynamique et du transfert de matière et de chaleur entre des parti-cules sphériques et un écoulement laminaire ou turbulent. Institut national des sciences appliquees de rouen, Saint-étienne-du-Rouvray.
[46]
Bouaziz, M., Dgheim, J., Grisenti, M., Bresson, J. and Zeghmati, B. (2002) Experimental and Numerical Study in Evaporation of Hydrocarbon Droplet Surface Temperature. ARI, 53, 16-24.
[47]
Renksizbulut, M. and Yuen, M.C. (1983) Numerical Study of Droplet Evaporation in a High-Temperature Stream. Journal of Heat Transfer, 105, 389-397.
https://doi.org/10.1115/1.3245591
[48]
Scherer, G.W. (1987) Drying Gels III. Warping Plate. Journal of Non-Crystalline Solids, 91, 83-100. https://doi.org/10.1016/S0022-3093(87)80087-X
[49]
Dgheim, J., Chesneau, X., Pietri, L. and Zeghmati, B. (2002) Heat and Mass Transfer Correlations for Liquid Droplet of a Pure Fuel in Combustion. Heat and Mass Transfer, 30, 543-550. https://doi.org/10.1007/s002310100202
[50]
Ranz, W.E. and Marshall, W.R. (1952) Evaporation from Drops. Chemical Engineering Progress, 48, 141-146.
[51]
Sazhin, S.S. (2018) Modelling of Droplet Heating and Evaporation. In: Basu, S., Agarwal, A., Mukhopadhyay, A. and Patel, C., Eds., Droplets and Sprays, Springer, Singapore, 45-75. https://doi.org/10.1007/978-981-10-7449-3_3
[52]
Zongo, S.A. (2015) étude des processus physiques et chimiques mis en jeu lors de la combustion des huiles végétales pures dans les moteurs diesel: Mécanismes de décomposition et de polymérisation. Université de Ouagadougou, Ouagadougou.
[53]
Demirbas, A. (2008) Mathematical Relationships Derived from Biodiesel Fuels. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 30, 56-69.
https://doi.org/10.1080/00908310600626762
[54]
Godsave, G.A.E. (1953) Studies of the Combustion of Drops in a Fuel Spray: The Burning of Single Drops of Fuel. Symposium (International) on Combustion, 4, 818-830. https://doi.org/10.1016/S0082-0784(53)80107-4
[55]
Spalding, D.B (1953) The Combustion of Liquid Fuels. Symposium (International) on Combustion, 4, 847-864. https://doi.org/10.1016/S0082-0784(53)80110-4
[56]
Williams, F.A. (1973) Combustion of Droplets of Liquid Fuels. Combustion and Flame, 21, 1-31. https://doi.org/10.1016/0010-2180(73)90002-3
[57]
Sparrow, E.M. and Gregg, J.L. (1958) The Variable Fluid-Property Problem in Free Convection. Transactions of ASME, 80, 879-886. https://doi.org/10.1115/1.4012546
[58]
Gu, X. (2012) Numerical Simulation of Conventional Fuels and Biofuels Dispersion and Vaporization Process in Co-Flow and Cross-Flow Premixers. Electronic Theses and Dissertations, No. 2314. http://stars.library.ucf.edu/etd/2314
[59]
Waldman, C.H. (1975) Theory of Non-Steady State Droplet Combustion. Symposium (International) on Combustion, 15, 429-442.
https://doi.org/10.1016/S0082-0784(75)80317-1
[60]
Strotos, G., Gavaises, M., Theodorakakos, A. and Bergeles, G. (2011) Numerical Investigation of the Evaporation of Two-Component Droplets. Fuel, 90, 1492-1507.
https://doi.org/10.1016/j.fuel.2011.01.017
[61]
Bouaziz, M. (1998) Etude numérique et expérimentale de l’évaporation simultanée de plusieurs gouttes de carburants: Influence de la pression, des convections et e l’interaction mécanique. Perpignan Via Domitia, Perpignan.
[62]
Knothe, G. and Razon, L.F. (2017) Biodiesel Fuels. Progress in Energy and Combustion Science, 58, 36-59. https://doi.org/10.1016/j.pecs.2016.08.001
[63]
Cho, S.Y. and Dryer, F.L. (1999) A numérical Study of the Unteady Burning Behavior of N-Heptane Droplets. Combustion Theory and Modelling, 3, 267-280.
https://doi.org/10.1088/1364-7830/3/2/004
[64]
Kadota, T. and Hiroyasu, H. (1976) Evaporation of a Single Droplet at Elevated Pressures and Temperatures. Bulletin of the JSME, 19, 1515-1521.
https://doi.org/10.1299/jsme1958.19.1515
[65]
Rajasekar, E. and Selvi, S. (2014) Review of Combustion Characteristics of CI Engines Fueled with Biodiesel. Renewable and Sustainable Energy Reviews, 35, 390-399.
https://doi.org/10.1016/j.rser.2014.04.006
[66]
Rah, S.C., Sarafim, A.F. and Beer, J.M. (1986) Ignition and Combustion of Liquid Fuel Droplets: Part I. Impact on Pollution Formation. Combustion Science and Technology, 48, 273-284. https://doi.org/10.1080/00102208608923897
[67]
Marchese, A.J. and Dryer, F.L. (1996) The Effect of Liquid Mass Transport on the Combustion and Extinction of Bicomponent Dropets of Methanol and Water. Combustion and Flame, 105, 104-122.
https://doi.org/10.1016/0010-2180(95)00179-4
[68]
Shaygan, N. and Prakash, S. (1995) Droplet Ignition and Combustion Including Liquid-Phase Heating. Combustion and Flame, 102, 1-10.
https://doi.org/10.1016/0010-2180(95)00027-4
[69]
Cho, S.Y., Yetter, R.A. and Dryer, F.L. (1992) Computer Model for Chemically Reacting Flow with Complex Chemistry, Multi-Component Diffusion and Heterogenous Processes. Journal of Computational Physics, 102, 432-459.
https://doi.org/10.1016/S0021-9991(05)80013-0
[70]
El-Kasaby, M. and Nemit-Allah, M. (2013) Experimental Investigations of Ignition Delay Period and Performance of a Diesel Engine Operated with Jatropha Oil Biodiesel. Alexandria Engineering Journal, 52, 141-149.
https://doi.org/10.1016/j.aej.2012.12.006
[71]
Qi, D., Lee, C., Jia, C., Wang, P. and Wu, S. (2014) Experimental Investigations of Combustion and Emission Characteristics of Rapeseed Oil-Diesel Blends in a Two-Cylinder Agricultural Diesel Engine. Energy Conversion and Management, 77, 227-232. https://doi.org/10.1016/j.enconman.2013.09.023