全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于ResNet和DF融合的用户购买预测算法研究
Research on User Purchase Prediction Algorithm Based on the Fusion of ResNet and DF

DOI: 10.12677/SEA.2022.111007, PP. 50-59

Keywords: 残差网络,深度森林,用户购买行为预测,组合预测
Residual Network
, Deep Forest, User Buying Behavior Prediction, Combined Forecast

Full-Text   Cite this paper   Add to My Lib

Abstract:

各大电商平台在前期为客户提供服务的同时已经积累了大量用户及商品数据,如何充分利用这些数据为企业增加收入、为用户提供个性化服务已成为研究热点。基于电商平台的环境及数据情况,针对电商平台用户及商品种类数量众多,但平台方无法准确预测用户是否购买这一问题,本文提出了一种基于残差神经网络(ResNet)和深度森林(Deep Forest)融合的用户购买行为预测算法。对某在线商城的大量数据处理为150维的用户特征数据和120维的商品特征数据。首先利用残差神经网络对用户购买行为进行预测,后通过深度森林进行预测,最后通过线性叠加的方式将两种模型融合。通过对残差神经网络进行调参,对深度森林中的随机森林深度进行调整进一步提高预测精度。实验结果表明,该融合模型相比传统算法具有更好的预测效果。
Major e-commerce platforms have accumulated a large amount of user and product data while providing services to customers in the early stage. How to make full use of these data to increase revenue for enterprises and provide personalized services for users has become a research hotspot. Based on the environment and data of the e-commerce platform, in view of the large number of e-commerce platform users and product types, the platform which cannot accurately predict whether the user will buy or not, this paper proposes a user purchase behavior prediction algorithm combined the residual neural network (ResNet) with deep forest (Deep Forest). A large amount of data of an online shopping mall is processed into 150-dimensional user characteristic data and 120-dimensional commodity characteristic data. First, the residual neural network is used to predict the user’s purchase behavior, and then the deep forest is used to predict, and finally the two models are merged by linear superposition. By adjusting the parameters of the residual neural network, the depth of the random forest in the deep forest is adjusted to further improve the prediction accuracy. Experimental results show that the fusion model has a better prediction effect than traditional algorithms.

References

[1]  刘潇蔓. 基于特征选择和模型融合的网络购买行为预测研究[D]: [硕士学位论文]. 北京: 北京交通大学, 2017.
[2]  卞天宇. 基于隐式反馈数据的用户行为分析及购买预测[D]: [硕士学位论文]. 南京: 南京邮电大学, 2020.
https://doi.org/10.27251/d.cnki.gnjdc.2020.000253
[3]  吴非. 基于特征工程的用户购买预测模型研究[D]: [硕士学位论文]. 西安: 长安大学, 2019.
[4]  盛钟松. 基于CatBoost集成算法的用户购买预测研究[J]. 现代计算机, 2021(9): 15-18.
[5]  葛绍林, 叶剑, 何明祥. 基于深度森林的用户购买行为预测模型[J]. 计算机科学, 2019, 46(9): 190-194.
[6]  Khade, A.A. (2016) Performing Customer Behavior Analysis Using Big Data Analytics. Procedia Computer Science, 79, 986-992.
https://doi.org/10.1016/j.procs.2016.03.125
[7]  Liu, X. and Jing, L. (2017) Us-ing Support Vector Machine for Online Purchase Predication. 2016 International Conference on Logistics, Informatics and Service Sciences (LISS), Sydney, 24-27 July 2016, 1-6.
https://doi.org/10.1109/LISS.2016.7854334
[8]  Sakar, C.O., Polat, S.O., Katircioglu, M., et al. (2018) Real-Time Prediction of Online Shoppers’ Purchasing Intention Using Multilayer Perceptron and LSTM Recurrent Neural Net-works. Neural Computing and Applications, 31, 6893-6908.
https://doi.org/10.1007/s00521-018-3523-0
[9]  Jacobs, B., Donkers, B. and Fok, D. (2016) Model-Based Purchase Predictions for Large Assortments. Social Science Electronic Publishing, Rochester.
[10]  曾宪宇, 刘淇, 赵洪科, 等. 用户在线购买预测: 一种基于用户操作序列和选择模型的方法[J]. 计算机研究与发展, 2016, 53(8): 1673-1683.
[11]  Biau, G. (2012) Analysis of a Random Forests Model. Journal of Machine Learning Research, 13, 1063-1095.
[12]  Breiman, L. (1996) Bagging Predictors. Machine Learning, 24, 123-140.
https://doi.org/10.1007/BF00058655
[13]  Breiman, L. (2000) Some Infinite Theory for Predictor Ensembles. University of California, Berkeley.
[14]  Breiman, L., Breiman, L. and Cutler, R.A. (2001) Random Forests Machine Learning. Journal of Clinical Microbiology, 2, 199-228.
[15]  Zhou, Z.H. and Feng, J. (2017) Deep Forest: Towards An Alternative to Deep Neural Networks. Proceedings of the 26th International Joint Conference on Artificial Intelligence Main Track, Melbourne, 19-25 August 2017, 3553-3559.
https://doi.org/10.24963/ijcai.2017/497
[16]  张宾, 付玥, 周晶, 王帅, 李晓明. 基于深度森林的电商平台用户行为预测方法[J]. 信息技术, 2021(6): 96-101.
https://doi.org/10.13274/j.cnki.hdzj.2021.06.018

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133