全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于GM(1,1)模型的秦皇岛市老龄化程度预测
Prediction of Aging Degree in Qinhuangdao City Based on the GM(1,1) Model

DOI: 10.12677/SA.2022.111006, PP. 46-52

Keywords: 老龄化,GM(1,1)模型,人口预测
Aging
, GM(1,1) Model, Population Forecast

Full-Text   Cite this paper   Add to My Lib

Abstract:

2019年,秦皇岛市60岁以上老年人口有69.68万人,占总人口的23.12%,高于全国、全省的平均水平,老龄化问题非常明显。本文利用2010~2019年秦皇岛市60岁以上老年人口及总人口数据,运用灰色GM(1,1)模型,分别预测了2020~2030年秦皇岛市60岁以上老年人口数及老龄化系数。预测结果表明未来十年秦皇岛市60岁以上老年人口数量将依然保持逐年上升,老龄化系数同时也在持续上涨。最后,从预测结果出发,为秦皇岛市进入老龄化社会后相关部门制定相关政策提供建议。
In 2019, there were more than 690 thousand people over 60 years old in Qinhuangdao, which accounts for 23.12% of the total population and is higher than the national and provincial average level. And the aging problem is very obvious. Based on the data of the elderly population over 60 years old and the total population in Qinhuangdao city from 2010 to 2019, using the grey GM(1,1) model prediction methods, this paper forecasts the number of the elderly population over 60 years old and the aging coefficient in Qinhuangdao city from 2020 to 2030. The prediction results show that the number of people over 60 years old in Qinhuangdao will increase year by year in the next decade, and the aging coefficient will also continue to rise. Finally, this paper provides suggestions for relevant departments to formulate relevant policies after Qinhuangdao enters an aging society based on the prediction results.

References

[1]  黄毅, 佟晓光. 中国人口老龄化现状分析[J]. 中国老年学杂志, 2012, 32(21): 4853-4855.
[2]  王泽旻, 潘红. 灰色系统模型在我国人口数量预测中的应用[J]. 统计与决策, 2005(1): 19.
[3]  谭春英, 谢恒星, 冯雪, 李清翠. GM(1,1)模型在烟台市人口预测中的应用[J]. 安徽农业科学, 2006, 34(17): 4469-4470+4475.
[4]  王莉. 灰色GM(1,1)模型在厦门市人口预测中的应用[J]. 厦门理工学院学报, 2013, 21(2): 6-9.
[5]  高红. 基于灰色预测系统的南京市人口老龄化预测[J]. 江苏商论, 2021(8): 137-140.
[6]  刘思峰, 谢乃明. 灰色系统理论及其应用[M]. 北京: 科学出版社, 2013: 142-146.
[7]  邬沧萍, 王琳, 苗瑞凤. 中国特色的人口老龄化过程、前景和对策[J]. 人口研究, 2004(1): 8-15.
[8]  张仁志. 秦皇岛市人口可持续发展问题与对策研究[J]. 中国环境管理干部学院学报, 2006, 16(1): 26-29.
[9]  李帅, 程杨, 高斯瑶. 京津冀地区人口老龄化空间差异研究[J]. 人口与发展, 2017, 23(1): 2-12.
[10]  李鲁. 安徽省人口老龄化预测与分析——基于灰色GM(1,1)模型[J]. 洛阳理工学院学报(社会科学版), 2020, 35(1): 25-31+79.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133