全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Structural and Morphological Study of LiCo1-XSmXOY Powders Obtained by the Sol-Gel Method

DOI: 10.4236/anp.2022.111001, PP. 1-12

Keywords: Cathode, Batteries, Samarium, Sol-Gel, Nanoparticles

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this study, the synthesis of LiCo1-XSmXOy powders (X = 0.002, 0.004, 0.006, 0.008, and 0.1) by the sol-gel method and the influence of Sm on their structural and morphological properties is reported for the first time. The results of x-ray diffraction (XRD) studies show that LiCoO2 powders synthesized at temperatures up to 700°C present a characteristic hexagonal crystalline phase of the α-NaFeO2 type (space group R-3m), revealing a shift in the (0 0 3) Bragg reflection, which reflects the presence of Sm in the crystalline structure. The morphology was spheroidal and, on average, 122 nm in size. Based on the data obtained, LiCo1-XSmXOy powders (X = 0.002, 0.004, 0.006, 0.008, and 0.1) show promise as a material for use in the cathodes of lithium-ion batteries.

References

[1]  Nishijima, M., et al. (2014) Accelerated Discovery of Cathode Materials with Prolonged Cycle Life for Lithium-Ion Battery. Nature Communications, 5, Article No. 4553.
https://doi.org/10.1038/ncomms5553
[2]  Nitta, N., Wu, F., Lee, J.T. and Yushin, G. (2015) Li-Ion Battery Materials: Present and Future. Materials Today, 18, 252-264.
https://doi.org/10.1016/j.mattod.2014.10.040
[3]  Ceder, G. (2010) Opportunities and Challenges for First-Principles Materials Design and Applications to Li Battery Materials. MRS Bulletin, 35, 693-701.
https://doi.org/10.1557/mrs2010.681
[4]  Brog, J.P., et al. (2017) Characteristics and Properties of Nano-LiCoO2 Synthesized by Pre-Organized Single Source Precursors: Li-Ion Diffusivity, Electrochemistry and Biological Assessment. Journal of Nanobiotechnology, 15, Article No. 58.
https://doi.org/10.1186/s12951-017-0292-3
[5]  Huang, L., et al. (2020) Electrode Design for Lithium-Sulfur Batteries: Problems and Solutions. Advanced Functional Materials, 30, Article ID: 1910375.
[6]  Zhang, L., et al. (2020) Advanced Matrixes for Binder-Free Nanostructured Electrodes in Lithium-Ion Batteries. Advanced Functional Materials, 32, Article ID: 1908445.
[7]  Yan, C., Yuan, H., Park, H.S. and Huang, J.Q. (2020) Perspective on the Critical Role of Interface for Advanced Batteries. Journal of Energy Chemistry, 47, 217-220.
https://doi.org/10.1016/j.jechem.2019.09.034
[8]  Li, G.F. and Zhang, J. (2012) Synthesis of Nano-Sized Lithium Cobalt Oxide via a Sol-Gel Method. Applied Surface Science, 258, 7612-7616.
https://doi.org/10.1016/j.apsusc.2012.04.102
[9]  Yu, X., Sandhu, N.S., Yang, Z. and Zheng, M. (2020) Suitability of Energy Sources for Automotive Application—A Review. Applied Energy, 271, Article ID: 115169.
https://doi.org/10.1016/j.apenergy.2020.115169
[10]  Gupta, A. and Manthiram, A. (2020) Designing Advanced Lithium-Based Batteries for Low-Temperature Conditions. Advanced Energy Materials, 10, Article ID: 2001972.
[11]  Lockwood, D.J. (2016) Nanostructure Science and Technology. Springer, New York.
[12]  Sasmaz, M. (2015) Synthesis and Physical Characterization of LiXO2 (X=Ni, Mn, Co, Cu) Nanocomposites for Li Ion Batteries. Journal of Materials and Electronic Devices, 1, 44-49.
[13]  Meng, Y.S. and Arroyo-de Dompablo, M.E. (2013) Recent Advances in First Principles Computational Research of Cathode Materials for Lithium-Ion Batteries. Accounts of Chemical Research, 46, 1171-1180.
https://doi.org/10.1021/ar2002396
[14]  Ding, Y.H., Zhang, P., Jiang, Y. and Gao, D.S. (2007) Effect of Rare Earth Elements Doping on Structure and Electrochemical Properties of LiNi1/3Co1/3Mn1/3O2 for Lithium-Ion Battery. Solid State Ionics, 178, 967-971.
https://doi.org/10.1016/j.ssi.2007.04.012
[15]  Mo, M.Y., et al. (2014) Improved Cycling and Rate Performance of Sm-Doped LiNi0.5Mn1.5O4 Cathode Materials for 5V Lithium-Ion Batteries. Applied Surface Science, 290, 412-418.
https://doi.org/10.1016/j.apsusc.2013.11.094
[16]  Meng, X.D., Han, B., Wang, Y.F. and Nan, J.Y. (2016) Effects of Samarium Doping on the Electrochemical Performance of LiFePO4/C Cathode Material for Lithium- Ion Batteries. Ceramics International, 42, 2599-2604.
https://doi.org/10.1016/j.ceramint.2015.10.063
[17]  Yang, W.D., Hsieh, C.Y., Chuang, H.J. and Chen, Y.S. (2010) Preparation and Characterization of Nanometric-Sized LiCoO2 Cathode Materials for Lithium Batteries by a Novel Sol-Gel Method. Ceramics International, 36, 135-140.
https://doi.org/10.1016/j.ceramint.2009.07.011
[18]  Aziz, N.A.A., Abdullah, T.K. and Mohamad, A.A. (2016) Synthesis of LiCoO2 Prepared by Sol-gel Method. Procedia Chemistry, 19, 861-864.
https://doi.org/10.1016/j.proche.2016.03.114
[19]  Kwon, T., Ohnishi, T., Mitsuishi, K., Ozawa, T.C. and Takada, K. (2015) Synthesis of LiCoO2 Epitaxial Thin Films Using a Sol-Gel Method. Journal of Power Sources, 274, 417-423.
https://doi.org/10.1016/j.jpowsour.2014.10.070
[20]  Porthault, H., Baddour-Hadjean, R., Le Cras, F., Bourbon, C. and Franger, S. (2012) Raman Study of the Spinel-to-Layered Phase Transformation in Sol-Gel LiCoO2 Cathode Powders as a Function of the Post-Annealing Temperature. Vibrational Spectroscopy, 62, 152-158.
https://doi.org/10.1016/j.vibspec.2012.05.004
[21]  Freitas, B., Siqueira, J., da Costa, L., Ferreira, G. and Resende, J. (2017) Synthesis and Characterization of LiCoO2 from Different Precursors by Sol-Gel Method. Journal of the Brazilian Chemical Society, 28, 2254-2266.
https://doi.org/10.21577/0103-5053.20170077
[22]  Soltanmohammad, S. and Asgari, S. (2010) Characterization of LiCoO2 Nanopowders Produced by Sol-Gel Processing. Journal of Nanomaterials, 2010, Article ID: 104012.
https://doi.org/10.1155/2010/104012
[23]  Julien, C. (2000) Local Cationic Environment in Lithium Nickel-Cobalt Oxides Used as Cathode Materials for Lithium Batteries. Solid State Ionics, 136-137, 887-896.
https://doi.org/10.1016/S0167-2738(00)00503-8
[24]  Satyapal, H.K., Singh, R.K., Sonu Kumar, S. and Bhushan Das, S. (2021) Tuning the Structural, Magnetic and Multiferroic Properties of Sm3+ Substituted Barium Hexaferrites BaFe12-XSmXO19 Nanoceramics. Materials Today: Proceedings, 44, 1833-1840.
https://doi.org/10.1016/j.matpr.2020.12.011
[25]  Sivaraj, P., Abhilash, K.P., Christopher Selvin, P. and Nalini, B. (2019) Investigations on the Effect Of Sm3+ Doping on the Electrochemical Performance of the Li2FeSiO4/C Nanocomposite Cathode Material for Lithium Ion Batteries. Materials Today: Proceedings, 8, 346-351.
https://doi.org/10.1016/j.matpr.2019.02.121
[26]  Reddy, M.V., et al. (2014) Studies on Bare and Mg-Doped LiCoO2 as a Cathode Material for Lithium-Ion Batteries. Electrochimica Acta, 128, 192-197.
https://doi.org/10.1016/j.electacta.2013.10.192
[27]  Huang, B., Wang, M., Zuo, Y.X., Zhao, Z.Y., Zhang, X.W. and Gu, Y.J. (2020) The Effects of Reheating Process on the Electrochemical Properties of Single Crystal LiNi0.6Mn0.2Co0.2O2. Solid State Ionics, 345, Article ID: 115200.
https://doi.org/10.1016/j.ssi.2019.115200
[28]  Yuan, H., Song, W.B., Wang, M., Gu, Y.J. and Chen, Y.B. (2019) Lithium-Ion Conductive Coating Layer on Nickel Rich Layered Oxide Cathode Material with Improved Electrochemical Properties for Li-Ion Battery. Journal of Alloys and Compounds, 784, 1311-1322.
https://doi.org/10.1016/j.jallcom.2019.01.072
[29]  Wu, Q., Li, W.R., Cheng, Y. and Jiang, Z.Y. (2005) Homogenous LiCoO2 Nanoparticles Prepared Using Surfactant P123 as Template and Its Application to Manufacturing Ultra-Thin-Film Electrode. Materials Chemistry and Physics, 91, 463-467.
https://doi.org/10.1016/j.matchemphys.2004.12.011
[30]  Muniz, F.T.L., Miranda, M.A.R., Morilla dos Santos, C. and Sasaki, J.M. (2016) The Scherrer Equation and the Dynamical Theory of X-Ray Diffraction. Acta Crystallographica Section A: Foundations and Advances, 72, 385-390.
https://doi.org/10.1107/S205327331600365X
[31]  Ingham, B. and Toney, M.F. (2014) X-Ray Diffraction for Characterizing Metallic Films. In: Barmak, K. and Coffey, K., Eds., Metallic Films for Electronic, Optical and Magnetic Applications, Woodhead Publishing, Cambridge, 3-38.
https://doi.org/10.1533/9780857096296.1.3

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133